IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3118-d1194377.html
   My bibliography  Save this article

Bifurcation Analysis in a Harvested Modified Leslie–Gower Model Incorporated with the Fear Factor and Prey Refuge

Author

Listed:
  • Seralan Vinoth

    (Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India)

  • R. Vadivel

    (Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, Thailand)

  • Nien-Tsu Hu

    (Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Chin-Sheng Chen

    (Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Nallappan Gunasekaran

    (Eastern Michigan Joint College of Engineering, Beibu Gulf University, Qinzhou 535011, China)

Abstract

Fear and prey refuges are two significant topics in the ecological community because they are closely associated with the connectivity of natural resources. The effect of fear on prey populations and prey refuges (proportional to both the prey and predator) is investigated in the nonlinear-type predator-harvested Leslie–Gower model. This type of prey refuge is much more sensible and realistic than the constant prey refuge model. Because there is less research on the dynamics of this type of prey refuge, the current study has been considered to strengthen the existing literature. The number and stability properties of all positive equilibria are examined. Since the calculations for the determinant and trace of the Jacobian matrix are quite complicated at these equilibria, the stability of certain positive equilibria is evaluated using a numerical simulation process. Sotomayor’s theorem is used to derive a precise mathematical confirmation of the appearance of saddle-node bifurcation and transcritical bifurcation. Furthermore, numerical simulations are provided to visually demonstrate the dynamics of the system and the stability of the limit cycle is discussed with the help of the first Lyapunov number. We perform some sensitivity investigations on our model solutions in relation to three key model parameters: the fear impact, prey refuges, and harvesting. Our findings could facilitate some biological understanding of the interactions between predators and prey.

Suggested Citation

  • Seralan Vinoth & R. Vadivel & Nien-Tsu Hu & Chin-Sheng Chen & Nallappan Gunasekaran, 2023. "Bifurcation Analysis in a Harvested Modified Leslie–Gower Model Incorporated with the Fear Factor and Prey Refuge," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3118-:d:1194377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evan L Preisser & Daniel I Bolnick, 2008. "The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
    2. Jianglin Zhao & Min Zhao & Hengguo Yu, 2013. "Complex Dynamical Behavior of a Predator-Prey System with Group Defense," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, July.
    3. Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
    4. Li, Yajing & He, Mengxin & Li, Zhong, 2022. "Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 417-439.
    5. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    6. Thirthar, Ashraf Adnan & Majeed, Salam J. & Alqudah, Manar A. & Panja, Prabir & Abdeljawad, Thabet, 2022. "Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyu Wang & Xiaoyuan Wan & Junyao Hou & Jing Lian & Yuzhao Wang, 2024. "A Study on Effects of Species with the Adaptive Sex-Ratio on Bio-Community Based on Mechanism Analysis and ODE," Mathematics, MDPI, vol. 12(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    2. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    3. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Li, Yajing & He, Mengxin & Li, Zhong, 2022. "Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 417-439.
    5. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Thirthar, Ashraf Adnan & Majeed, Salam J. & Alqudah, Manar A. & Panja, Prabir & Abdeljawad, Thabet, 2022. "Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Tiwari, Vandana & Tripathi, Jai Prakash & Mishra, Swati & Upadhyay, Ranjit Kumar, 2020. "Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    9. Yangyang Su & Tongqian Zhang, 2022. "Global Dynamics of a Predator–Prey Model with Fear Effect and Impulsive State Feedback Control," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    10. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Predator–Prey Model Considering Implicit Marine Reserved Area and Linear Function of Critical Biomass Level," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    11. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    12. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    13. Zhenglong Chen & Shunjie Li & Xuebing Zhang, 2022. "Analysis of a Delayed Reaction-Diffusion Predator–Prey System with Fear Effect and Anti-Predator Behaviour," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    14. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    15. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    16. Liu, He & Dai, Chuanjun & Yu, Hengguo & Guo, Qing & Li, Jianbing & Hao, Aimin & Kikuchi, Jun & Zhao, Min, 2023. "Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 368-386.
    17. Dingyong Bai & Xiaoxuan Zhang, 2022. "Dynamics of a Predator–Prey Model with the Additive Predation in Prey," Mathematics, MDPI, vol. 10(4), pages 1-30, February.
    18. Feng, Xiaozhou & Liu, Xia & Sun, Cong & Jiang, Yaolin, 2023. "Stability and Hopf bifurcation of a modified Leslie–Gower predator–prey model with Smith growth rate and B–D functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Yousef, Fatma Bozkurt & Yousef, Ali & Maji, Chandan, 2021. "Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Wu, Yuhang & Ni, Mingkang, 2024. "Complex dynamics in a singularly perturbed Hastings–Powell model with the additive Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3118-:d:1194377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.