IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305634.html
   My bibliography  Save this article

A Bayesian approach for monitoring epidemics in presence of undetected cases

Author

Listed:
  • De Simone, Andrea
  • Piangerelli, Marco

Abstract

One of the key indicators used in tracking the evolution of an infectious disease is the reproduction number. This quantity is usually computed using the reported number of cases, but ignoring that many more individuals may be infected (e.g. asymptomatic carriers). We develop a Bayesian procedure to quantify the impact of undetected infectious cases on the determination of the effective reproduction number. Our approach is stochastic, data-driven and not relying on any compartmental model. It is applied to the COVID-19 outbreak in eight different countries and all Italian regions, showing that the effect of undetected cases leads to estimates of the effective reproduction numbers larger than those obtained only with the reported cases by factors ranging from two to ten.

Suggested Citation

  • De Simone, Andrea & Piangerelli, Marco, 2020. "A Bayesian approach for monitoring epidemics in presence of undetected cases," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305634
    DOI: 10.1016/j.chaos.2020.110167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luís M A Bettencourt & Ruy M Ribeiro, 2008. "Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schaum, A. & Bernal-Jaquez, R. & Alarcon Ramos, L., 2022. "Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    2. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    3. Chad Cotti & Bryan Engelhardt & Joshua Foster & Erik Nesson & Paul Niekamp, 2021. "The relationship between in‐person voting and COVID‐19: Evidence from the Wisconsin primary," Contemporary Economic Policy, Western Economic Association International, vol. 39(4), pages 760-777, October.
    4. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    5. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    6. Kernel Prieto & M Victoria Chávez–Hernández & Jhoana P Romero–Leiton, 2022. "On mobility trends analysis of COVID–19 dissemination in Mexico City," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    7. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    8. Ida Johnsson & M. Hashem Pesaran & Cynthia Fan Yang, 2023. "Structural Econometric Estimation of the Basic Reproduction Number for Covid-19 across U.S. States and Selected Countries," CESifo Working Paper Series 10659, CESifo.
    9. Kernel Prieto, 2022. "Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
    10. Sean Elliott & Christian Gourieroux, 2020. "Uncertainty on the Reproduction Ratio in the SIR Model," Papers 2012.11542, arXiv.org.
    11. Mostafa Adimy & Julien Molina & Laurent Pujo-Menjouet & Grégoire Ranson & Jianhong Wu, 2022. "Forecasting the Effect of Pre-Exposure Prophylaxis (PrEP) on HIV Propagation with a System of Differential–Difference Equations with Delay," Mathematics, MDPI, vol. 10(21), pages 1-24, November.
    12. Maeno, Yoshiharu, 2016. "Detecting a trend change in cross-border epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 73-81.
    13. Sean ELLIOTT & Christian GOURIEROUX, 2020. "Uncertainty on the Reproduction Ratio in the SIR Model," Working Papers 2020-31, Center for Research in Economics and Statistics.
    14. José Ulises Márquez Urbina & Graciela González Farías & L Leticia Ramírez Ramírez & D Iván Rodríguez González, 2022. "A multi-source global-local model for epidemic management," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-26, January.
    15. Anup Malani & Satej Soman & Sabareesh Ramachandran & Alice Chen & Darius N. Lakdawalla, 2022. "Vaccine Allocation Priorities Using Disease Surveillance and Economic Data," NBER Working Papers 29682, National Bureau of Economic Research, Inc.
    16. Kyle S Hickmann & Geoffrey Fairchild & Reid Priedhorsky & Nicholas Generous & James M Hyman & Alina Deshpande & Sara Y Del Valle, 2015. "Forecasting the 2013–2014 Influenza Season Using Wikipedia," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-29, May.
    17. Park, Dojoon & Kang, Yong Joo & Eom, Young Ho, 2024. "Asset pricing tests for pandemic risk," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1314-1334.
    18. Fajar, Muhammad, 2020. "Estimasi angka reproduksi Novel Coronavirus (COVID-19), Kasus Indonesia (Estimation of COVID-19 reproductive number, case of Indonesia [Estimation Of Covid-19 Reproductive Number (Case Of Indonesia," MPRA Paper 105099, University Library of Munich, Germany, revised 28 Mar 2020.
    19. Anup Malani & Satej Soman & Sam Asher & Paul Novosad & Clement Imbert & Vaidehi Tandel & Anish Agarwal & Abdullah Alomar & Arnab Sarker & Devavrat Shah & Dennis Shen & Jonathan Gruber & Stuti Sachdeva, 2020. "Adaptive Control of COVID-19 Outbreaks in India: Local, Gradual, and Trigger-based Exit Paths from Lockdown," NBER Working Papers 27532, National Bureau of Economic Research, Inc.
    20. Flávio Codeço Coelho & Cláudia Torres Codeço & M Gabriela M Gomes, 2011. "A Bayesian Framework for Parameter Estimation in Dynamical Models," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-6, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.