IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4093-d961631.html
   My bibliography  Save this article

Forecasting the Effect of Pre-Exposure Prophylaxis (PrEP) on HIV Propagation with a System of Differential–Difference Equations with Delay

Author

Listed:
  • Mostafa Adimy

    (Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5208, Inria, Institut Camille Jordan, F-69603 Villeurbanne, France
    These authors contributed equally to this work.)

  • Julien Molina

    (Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5208, Inria, Institut Camille Jordan, F-69603 Villeurbanne, France
    These authors contributed equally to this work.)

  • Laurent Pujo-Menjouet

    (Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5208, Inria, Institut Camille Jordan, F-69603 Villeurbanne, France
    These authors contributed equally to this work.)

  • Grégoire Ranson

    (Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5208, Inria, Institut Camille Jordan, F-69603 Villeurbanne, France
    Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
    These authors contributed equally to this work.)

  • Jianhong Wu

    (Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
    These authors contributed equally to this work.)

Abstract

The HIV/AIDS epidemic is still active worldwide with no existing definitive cure. Based on the WHO recommendations stated in 2014, a treatment, called Pre-Exposure Prophylaxis (PrEP), has been used in the world, and more particularly in France since 2016, to prevent HIV infections. In this paper, we propose a new compartmental epidemiological model with a limited protection time offered by this new treatment. We describe the PrEP compartment with an age-structure hyperbolic equation and introduce a differential equation on the parameter that governs the PrEP starting process. This leads us to a nonlinear differential–difference system with discrete delay. After a local stability analysis, we prove the global behavior of the system. Finally, we illustrate the solutions with numerical simulations based on the data of the French Men who have Sex with Men (MSM) population. We show that the choice of a logistic time dynamics combined with our Hill-function-like model leads to a perfect data fit. These results enable us to forecast the evolution of the HIV epidemics in France if the populations keep using PrEP.

Suggested Citation

  • Mostafa Adimy & Julien Molina & Laurent Pujo-Menjouet & Grégoire Ranson & Jianhong Wu, 2022. "Forecasting the Effect of Pre-Exposure Prophylaxis (PrEP) on HIV Propagation with a System of Differential–Difference Equations with Delay," Mathematics, MDPI, vol. 10(21), pages 1-24, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4093-:d:961631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simpson, Lindsay & Gumel, Abba B., 2017. "Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 168-193.
    2. Luís M A Bettencourt & Ruy M Ribeiro, 2008. "Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    2. De Simone, Andrea & Piangerelli, Marco, 2020. "A Bayesian approach for monitoring epidemics in presence of undetected cases," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    4. Fajar, Muhammad, 2020. "Estimasi angka reproduksi Novel Coronavirus (COVID-19), Kasus Indonesia (Estimation of COVID-19 reproductive number, case of Indonesia [Estimation Of Covid-19 Reproductive Number (Case Of Indonesia," MPRA Paper 105099, University Library of Munich, Germany, revised 28 Mar 2020.
    5. Chad Cotti & Bryan Engelhardt & Joshua Foster & Erik Nesson & Paul Niekamp, 2021. "The relationship between in‐person voting and COVID‐19: Evidence from the Wisconsin primary," Contemporary Economic Policy, Western Economic Association International, vol. 39(4), pages 760-777, October.
    6. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    7. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    8. Kernel Prieto & M Victoria Chávez–Hernández & Jhoana P Romero–Leiton, 2022. "On mobility trends analysis of COVID–19 dissemination in Mexico City," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    9. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    10. Anup Malani & Satej Soman & Sam Asher & Paul Novosad & Clement Imbert & Vaidehi Tandel & Anish Agarwal & Abdullah Alomar & Arnab Sarker & Devavrat Shah & Dennis Shen & Jonathan Gruber & Stuti Sachdeva, 2020. "Adaptive Control of COVID-19 Outbreaks in India: Local, Gradual, and Trigger-based Exit Paths from Lockdown," NBER Working Papers 27532, National Bureau of Economic Research, Inc.
    11. Ida Johnsson & M. Hashem Pesaran & Cynthia Fan Yang, 2023. "Structural Econometric Estimation of the Basic Reproduction Number for Covid-19 across U.S. States and Selected Countries," CESifo Working Paper Series 10659, CESifo.
    12. Flávio Codeço Coelho & Cláudia Torres Codeço & M Gabriela M Gomes, 2011. "A Bayesian Framework for Parameter Estimation in Dynamical Models," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-6, May.
    13. Kernel Prieto, 2022. "Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
    14. Adam Brzezinski & David Van Dijcke & Valentin Kecht, 2020. "The Cost of Staying Open: Voluntary Social Distancing and Lockdowns in the US," Economics Series Working Papers 910, University of Oxford, Department of Economics.
    15. Bo Huang & Zhihui Huang & Chen Chen & Jian Lin & Tony Tam & Yingyi Hong & Sen Pei, 2022. "Social vulnerability amplifies the disparate impact of mobility on COVID-19 transmissibility across the United States," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    16. Sean Elliott & Christian Gourieroux, 2020. "Uncertainty on the Reproduction Ratio in the SIR Model," Papers 2012.11542, arXiv.org.
    17. Jean-Paul Renne & Guillaume Roussellet & Gustavo Schwenkler, 2020. "Preventing COVID-19 Fatalities: State versus Federal Policies," Papers 2010.15263, arXiv.org, revised Dec 2020.
    18. Singh, Anurag & Arquam, Md, 2022. "Epidemiological modeling for COVID-19 spread in India with the effect of testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    19. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    20. Maeno, Yoshiharu, 2016. "Detecting a trend change in cross-border epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 73-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4093-:d:961631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.