IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305038.html
   My bibliography  Save this article

Short-term forecasts of the COVID-19 pandemic: a study case of Cameroon

Author

Listed:
  • Nkwayep, C. Hameni
  • Bowong, S.
  • Tewa, J.J.
  • Kurths, J.

Abstract

In this paper, an Ensemble of Kalman filter (EnKf) approach is developed to estimate unmeasurable state variables and unknown parameters in a COVID-19 model. We first formulate a mathematical model for the dynamic transmission of COVID-19 that takes into account the circulation of free coronaviruses in the environment. We provide the basic properties of the model and compute the basic reproduction number R0 that plays an important role in the outcome of the disease. After, assuming continuous measurement of newly COVID-19 reported cases, deceased and recovered individuals, the EnKf approach is used to estimate the unmeasured variables and unknown COVID-19 transmission rates using real data of the current COVID-19 pandemic in Cameroon. We present the forecasts of the current pandemic in Cameroon and explore the impact of non-pharmaceutical interventions such as mass media-based sensitization, social distancing, face-mask wearing, contact tracing and the desinfection and decontamination of infected places by using suitable products against free coronaviruses in the environment in order to reduce the spread of the disease. Through numerical simulations, we find that at that time (i) R0≈2.9495 meaning that the disease will not die out without any control measures, (ii) the infection from COVID-19 infected cases is more important than the infection from free coronaviruses in the environment, (iii) the number of new COVID-19 cases will still increase and there is a necessity to increase timely the surveillance by using contact tracing and sensibilisation of the population to respect social distancing, face-masks wearing through awareness programs and (iv) the eradication of the pandemic is highly dependent on the control measures taken by governments.

Suggested Citation

  • Nkwayep, C. Hameni & Bowong, S. & Tewa, J.J. & Kurths, J., 2020. "Short-term forecasts of the COVID-19 pandemic: a study case of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305038
    DOI: 10.1016/j.chaos.2020.110106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    2. Schaum, A. & Bernal-Jaquez, R. & Alarcon Ramos, L., 2022. "Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    5. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "A Flexible Lockdown by Integrating Public Health and Economic Reactivation to Response the Crisis of COVID-19: Responses to Comments by Alvaro J Idrovo on “An Examination on the Transmission of COVID-," IJERPH, MDPI, vol. 17(21), pages 1-4, November.
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Din, Anwarud & Li, Yongjin & Khan, Tahir & Zaman, Gul, 2020. "Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Asif, Muhammad & Ali Khan, Zar & Haider, Nadeem & Al-Mdallal, Qasem, 2020. "Numerical simulation for solution of SEIR models by meshless and finite difference methods," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Yu, Shuhong & Zhou, Yunxiu & Du, Tingsong, 2022. "Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    12. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    13. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    17. Algehyne, Ebrahem A. & Ibrahim, Muhammad, 2021. "Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Zhang, Zizhen, 2020. "A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.