IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v106y2022i3d10.1007_s10182-021-00433-5.html
   My bibliography  Save this article

Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections

Author

Listed:
  • Giacomo De Nicola

    (Ludwig-Maximillians-Universität München)

  • Marc Schneble

    (Ludwig-Maximillians-Universität München)

  • Göran Kauermann

    (Ludwig-Maximillians-Universität München)

  • Ursula Berger

    (Ludwig-Maximillians-Universität München)

Abstract

Governments around the world continue to act to contain and mitigate the spread of COVID-19. The rapidly evolving situation compels officials and executives to continuously adapt policies and social distancing measures depending on the current state of the spread of the disease. In this context, it is crucial for policymakers to have a firm grasp on what the current state of the pandemic is, and to envision how the number of infections is going to evolve over the next days. However, as in many other situations involving compulsory registration of sensitive data, cases are reported with delay to a central register, with this delay deferring an up-to-date view of the state of things. We provide a stable tool for monitoring current infection levels as well as predicting infection numbers in the immediate future at the regional level. We accomplish this through nowcasting of cases that have not yet been reported as well as through predictions of future infections. We apply our model to German data, for which our focus lies in predicting and explain infectious behavior by district.

Suggested Citation

  • Giacomo De Nicola & Marc Schneble & Göran Kauermann & Ursula Berger, 2022. "Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 407-426, September.
  • Handle: RePEc:spr:alstar:v:106:y:2022:i:3:d:10.1007_s10182-021-00433-5
    DOI: 10.1007/s10182-021-00433-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00433-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00433-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Beam Dowd & Liliana Andriano & David M. Brazel & Valentina Rotondi & Per Block & Xuejie Ding & Yan Liu & Melinda C. Mills, 2020. "Demographic science aids in understanding the spread and fatality rates of COVID-19," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(18), pages 9696-9698, May.
    2. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    3. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    4. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    5. Seth Flaxman & Swapnil Mishra & Axel Gandy & H. Juliette T. Unwin & Thomas A. Mellan & Helen Coupland & Charles Whittaker & Harrison Zhu & Tresnia Berah & Jeffrey W. Eaton & Mélodie Monod & Azra C. Gh, 2020. "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe," Nature, Nature, vol. 584(7820), pages 257-261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gert G. Wagner, 2022. "Grenzen und Fortschritte indikatorengestützter Politik am Beispiel der Corona-Pandemie [Limitations and progress of indicator-based policy – The case of the Corona pandemic]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(3), pages 171-187, December.
    2. Ursula Berger & Göran Kauermann & Helmut Küchenhoff, 2022. "Discussion on On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 387-390, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noureddine Ouerfelli & Narcisa Vrinceanu & Diana Coman & Adriana Lavinia Cioca, 2022. "Empirical Modeling of COVID-19 Evolution with High/Direct Impact on Public Health and Risk Assessment," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    2. Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    3. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
    4. Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    5. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    6. Costa-Font, Joan & Vilaplana-Prieto, Cristina, 2022. "Risky restrictions? Mobility restriction effects on risk awareness and anxiety," Health Policy, Elsevier, vol. 126(11), pages 1090-1102.
    7. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Foliano, Francesca & Tonei, Valentina & Sevilla, Almudena, 2024. "Social restrictions, leisure and well-being," Labour Economics, Elsevier, vol. 87(C).
    10. Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
    11. Emanuele Amodio & Michele Battisti & Antonio Francesco Gravina & Andrea Mario Lavezzi & Giuseppe Maggio, 2023. "School‐age vaccination, school openings and Covid‐19 diffusion," Health Economics, John Wiley & Sons, Ltd., vol. 32(5), pages 1084-1100, May.
    12. Jorge Paz, 2020. "Notas sobre la demografía del COVID-19 en Argentina," Working Papers 22, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    13. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    14. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    15. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    16. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    18. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    19. Battiston, Pietro & Gamba, Simona, 2021. "COVID-19: R0 is lower where outbreak is larger," Health Policy, Elsevier, vol. 125(2), pages 141-147.
    20. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:106:y:2022:i:3:d:10.1007_s10182-021-00433-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.