IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6373-d822755.html
   My bibliography  Save this article

In the Seeking of Association between Air Pollutant and COVID-19 Confirmed Cases Using Deep Learning

Author

Listed:
  • Yu-Tse Tsan

    (Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung City 407204, Taiwan
    School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
    Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung City 407204, Taiwan)

  • Endah Kristiani

    (Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan
    Department of Informatics, Krida Wacana Christian University, Jakarta 11470, Indonesia)

  • Po-Yu Liu

    (Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City 407204, Taiwan)

  • Wei-Min Chu

    (School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
    Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung City 407204, Taiwan
    Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407204, Taiwan
    School of Medicine, National Yang Ming Chiao Tung University, Taipei City 11221, Taiwan)

  • Chao-Tung Yang

    (Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan
    Research Center for Smart Sustainable Circular Economy, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan)

Abstract

The COVID-19 pandemic raises awareness of how the fatal spreading of infectious disease impacts economic, political, and cultural sectors, which causes social implications. Across the world, strategies aimed at quickly recognizing risk factors have also helped shape public health guidelines and direct resources; however, they are challenging to analyze and predict since those events still happen. This paper intends to invesitgate the association between air pollutants and COVID-19 confirmed cases using Deep Learning. We used Delhi, India, for daily confirmed cases and air pollutant data for the dataset. We used LSTM deep learning for training the combination of COVID-19 Confirmed Case and AQI parameters over the four different lag times of 1, 3, 7, and 14 days. The finding indicates that CO is the most excellent model compared with the others, having on average, 13 RMSE values. This was followed by pressure at 15, PM 2.5 at 20, NO 2 at 20, and O 3 at 22 error rates.

Suggested Citation

  • Yu-Tse Tsan & Endah Kristiani & Po-Yu Liu & Wei-Min Chu & Chao-Tung Yang, 2022. "In the Seeking of Association between Air Pollutant and COVID-19 Confirmed Cases Using Deep Learning," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6373-:d:822755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ankit Gupta & Hemant Bherwani & Sneha Gautam & Saima Anjum & Kavya Musugu & Narendra Kumar & Avneesh Anshul & Rakesh Kumar, 2021. "Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6408-6417, April.
    2. Yu Fu & Shaofu Lin & Zhenkai Xu, 2022. "Research on Quantitative Analysis of Multiple Factors Affecting COVID-19 Spread," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    3. Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    5. Yu-Tse Tsan & Der-Yuan Chen & Po-Yu Liu & Endah Kristiani & Kieu Lan Phuong Nguyen & Chao-Tung Yang, 2022. "The Prediction of Influenza-like Illness and Respiratory Disease Using LSTM and ARIMA," IJERPH, MDPI, vol. 19(3), pages 1-17, February.
    6. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    3. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    4. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    5. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    10. Wei Wang & Bin Ma & Xing Guo & Yong Chen & Yonghong Xu, 2024. "A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction," Energies, MDPI, vol. 17(15), pages 1-18, July.
    11. Zenteno-Catemaxca, Rolando & Moguel-Castañeda, Jazael G. & Rivera, Victor M. & Puebla, Hector & Hernandez-Martinez, Eliseo, 2021. "Monitoring a chemical reaction using pH measurements: An approach based on multiscale fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    13. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    14. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    17. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    18. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    19. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
    20. Fernando de Frutos & Teresa Cuerdo-Vilches & Carmen Alonso & Fernando Martín-Consuegra & Borja Frutos & Ignacio Oteiza & Miguel Ángel Navas-Martín, 2021. "Indoor Environmental Quality and Consumption Patterns before and during the COVID-19 Lockdown in Twelve Social Dwellings in Madrid, Spain," Sustainability, MDPI, vol. 13(14), pages 1-45, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6373-:d:822755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.