IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924010026.html
   My bibliography  Save this article

Decoding compositional complexity: Identifying composers using a model fusion-based approach with nonlinear signal processing and chaotic dynamics

Author

Listed:
  • Mirza, Fuat Kaan
  • Baykaş, Tunçer
  • Hekimoğlu, Mustafa
  • Pekcan, Önder
  • Tunçay, Gönül Paçacı

Abstract

Music, a universal medium that effortlessly transcends the confines of language and culture, serves as a vessel for the distinctive expression of a composer's ingenuity, particularly palpable through the elaborate symphony of melodies, harmonies, and rhythms. This phenomenon is acutely observable in the realm of Turkish Classical Music, where the identification of individual composers poses a formidable challenge due to a confluence of diverse stylistic expressions and sophisticated techniques. Shaped by centuries of cultural interchanges, this genre is celebrated for its convoluted rhythmic frameworks and deep melodic modes, often exhibiting fractal characteristics that compound the complexity of composer classification based on mere audio signals. In response to these complexities, this study introduces an advanced analytical paradigm that amalgamates Multi-resolution analysis, spectral entropy assessments, and a spectrum of multidimensional chaotic and statistical descriptors. By invoking chaos theory, the research delineates distinct patterns and features inherent to musical compositions, subsequently deploying these discoveries for composer categorization. Employing a model fusion-based strategy, the approach utilizes esteemed base estimators for section-level probabilistic determinations, subsequently amalgamated at the song level through a Long Short-Term Memory (LSTM) neural network model to classify a corpus of 380 compositions from 15 distinct composers. The results of this study not only highlight the efficacy of chaos-based approaches in Musical Information Retrieval but also provide a nuanced understanding of the unique characteristics of Turkish Classical Music, thus advancing the boundaries of how musicological data is scrutinized and conceptualized within scholarly discourse.

Suggested Citation

  • Mirza, Fuat Kaan & Baykaş, Tunçer & Hekimoğlu, Mustafa & Pekcan, Önder & Tunçay, Gönül Paçacı, 2024. "Decoding compositional complexity: Identifying composers using a model fusion-based approach with nonlinear signal processing and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010026
    DOI: 10.1016/j.chaos.2024.115450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Guangxi & Shi, Yingying, 2017. "Simulation analysis of multifractal detrended methods based on the ARFIMA process," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 235-243.
    2. Zhang, Xiaohong & Xu, Jingjing & Moshayedi, Ata Jahangir, 2024. "Design and FPGA implementation of a hyperchaotic conservative circuit with initial offset-boosting and transient transition behavior based on memcapacitor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    4. García-Rojas, Blanca E. & Ramirez-Dámaso, Gabriel & Caballero, Francisco & Femat, Ricardo, 2022. "Crisis-induced intermittency in Mexican dam flows," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Pavlov, A.N. & Semyachkina-Glushkovskaya, O.V. & Lychagov, V.V. & Abdurashitov, A.S. & Pavlova, O.N. & Sindeeva, O.A. & Sindeev, S.S., 2015. "Multifractal characterization of cerebrovascular dynamics in newborn rats," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 6-10.
    7. Ro, Wosuk & Kwon, Younghun, 2009. "1/f Noise analysis of songs in various genre of music," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2305-2311.
    8. Guyo, G.A. & Pavlov, A.N. & Pitsik, E.N. & Frolov, N.S. & Badarin, A.A. & Grubov, V.V. & Pavlova, O.N. & Hramov, A.E., 2022. "Cumulant analysis in wavelet space for studying effects of aging on electrical activity of the brain," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Pease, April & Mahmoodi, Korosh & West, Bruce J., 2018. "Complexity measures of music," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 82-86.
    10. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    11. Ugarte, Juan P. & Gómez-Echavarría, Alejandro & Tobón, Catalina, 2023. "Optimal compactness of fractional Fourier domain characterizes frequency modulated signals," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. McDonough, John & Herczyński, Andrzej, 2023. "Fractal patterns in music," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2022. "Evidence of the fractal market hypothesis in European industry sectors with the use of bootstrapped wavelet leaders singularity spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Sun, Shuqi & Shi, Hang & Musha, Ji'e & Yan, Dengwei & Duan, Shukai & Wang, Lidan, 2022. "Design of heterogeneous time-lags system with multi-stability and its analog circuit," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Johansyah, Muhamad Deni & Sambas, Aceng & Zheng, Song & Benkouider, Khaled & Vaidyanathan, Sundarapandian & Mohamed, Mohamad Afendee & Mamat, Mustafa, 2023. "A novel financial system with one stable and two unstable equilibrium points: Dynamics, coexisting attractors, complexity analysis and synchronization using integral sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Lu, XiaoJie & Zhang, JiQian & Huang, ShouFang & Lu, Jun & Ye, MingQuan & Wang, MaoSheng, 2021. "Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Su, Zhi-Yuan & Wu, Tzuyin, 2007. "Music walk, fractal geometry in music," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 418-428.
    18. Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
    19. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    20. Artun, E. Can & Keçoğlu, Ibrahim & Türkoğlu, Alpar & Berker, A. Nihat, 2023. "Multifractal spin-glass chaos projection and interrelation of multicultural music and brain signals," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    21. Lahmiri, Salim & Bekiros, Stelios & Avdoulas, Christos, 2018. "Time-dependent complexity measurement of causality in international equity markets: A spatial approach," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 215-219.
    22. Kaveh, H. & Salarieh, H. & Hajiloo, R., 2018. "On the control of unknown continuous time chaotic systems by applying Takens embedding theory," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 53-57.
    23. Roy, Souparno & Roy, Chandrima & Nag, Sayan & Banerjee, Archi & Sengupta, Ranjan & Ghosh, Dipak, 2020. "Chaos based non-linear cognitive study of different stimulus in the cross-modal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    24. Li, Yuxing & Geng, Bo & Jiao, Shangbin, 2022. "Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    25. Zhang, Jinren & Cao, Jinde & Wu, Tao & Huang, Wei & Ma, Tao & Zhou, Xinye, 2023. "A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    26. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    27. Xiong, Pei-Ying & Jahanshahi, Hadi & Alcaraz, Raúl & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alsaadi, Fawaz E., 2021. "Spectral Entropy Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural Network-Based Chattering-Free Sliding Mode Technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    28. Ferreira, Paulo & Quintino, Derick & Wundervald, Bruna & Dionísio, Andreia & Aslam, Faheem & Cantarinha, Ana, 2021. "Is Brazilian music getting more predictable? A statistical physics approach for different music genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    29. Dai, Yimei & Zhang, Hesheng & Mao, Xuegeng & Shang, Pengjian, 2018. "Complexity–entropy causality plane based on power spectral entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 501-514.
    30. Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Qingsong & Meng, Lu & Lv, Dayong, 2021. "Effect of introducing Bitcoin futures on the underlying Bitcoin market efficiency: A multifractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Xu, Zhao & Sun, Kehui & Wang, Huihai, 2024. "Dynamics and function projection synchronization for the fractional-order financial risk system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    4. Gündüz, Güngör, 2023. "Entropy, energy, and instability in music," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    6. Durán Medina, Olmo & Schmitt, François G. & Calif, Rudy & Germain, Grégory & Gaurier, Benoît, 2017. "Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production," Renewable Energy, Elsevier, vol. 112(C), pages 314-327.
    7. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    9. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Zhao, Mingjie & Li, Lixiang & Yuan, Zheng, 2024. "A multi-image encryption scheme based on a new n-dimensional chaotic model and eight-base DNA," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    12. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    14. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," FrenXiv e75gc_v1, Center for Open Science.
    15. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    16. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    17. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc_v1, Center for Open Science.
    18. Ramirez-Aristizabal, Adolfo G. & Médé, Butovens & Kello, Christopher T., 2018. "Complexity matching in speech: Effects of speaking rate and naturalness," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 175-179.
    19. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    20. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.