IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924010026.html
   My bibliography  Save this article

Decoding compositional complexity: Identifying composers using a model fusion-based approach with nonlinear signal processing and chaotic dynamics

Author

Listed:
  • Mirza, Fuat Kaan
  • Baykaş, Tunçer
  • Hekimoğlu, Mustafa
  • Pekcan, Önder
  • Tunçay, Gönül Paçacı

Abstract

Music, a universal medium that effortlessly transcends the confines of language and culture, serves as a vessel for the distinctive expression of a composer's ingenuity, particularly palpable through the elaborate symphony of melodies, harmonies, and rhythms. This phenomenon is acutely observable in the realm of Turkish Classical Music, where the identification of individual composers poses a formidable challenge due to a confluence of diverse stylistic expressions and sophisticated techniques. Shaped by centuries of cultural interchanges, this genre is celebrated for its convoluted rhythmic frameworks and deep melodic modes, often exhibiting fractal characteristics that compound the complexity of composer classification based on mere audio signals. In response to these complexities, this study introduces an advanced analytical paradigm that amalgamates Multi-resolution analysis, spectral entropy assessments, and a spectrum of multidimensional chaotic and statistical descriptors. By invoking chaos theory, the research delineates distinct patterns and features inherent to musical compositions, subsequently deploying these discoveries for composer categorization. Employing a model fusion-based strategy, the approach utilizes esteemed base estimators for section-level probabilistic determinations, subsequently amalgamated at the song level through a Long Short-Term Memory (LSTM) neural network model to classify a corpus of 380 compositions from 15 distinct composers. The results of this study not only highlight the efficacy of chaos-based approaches in Musical Information Retrieval but also provide a nuanced understanding of the unique characteristics of Turkish Classical Music, thus advancing the boundaries of how musicological data is scrutinized and conceptualized within scholarly discourse.

Suggested Citation

  • Mirza, Fuat Kaan & Baykaş, Tunçer & Hekimoğlu, Mustafa & Pekcan, Önder & Tunçay, Gönül Paçacı, 2024. "Decoding compositional complexity: Identifying composers using a model fusion-based approach with nonlinear signal processing and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010026
    DOI: 10.1016/j.chaos.2024.115450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.