IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics0960077920302253.html
   My bibliography  Save this article

Bistable stochastic resonance with linear amplitude response enhanced vector DOA estimation under low SNR conditions

Author

Listed:
  • Suo, Jian
  • Dong, Haitao
  • Shen, Xiaohong
  • Wang, Haiyan

Abstract

This work demonstrates a superior vector DOA estimation results by linear amplitude response of stochastic resonance with bistable nonlinear model, especially under low SNR conditions. The pre-processing problem of classical intensity based vector DOA estimation method is theoretically analyzed with gain-phase uncertainties, which demonstrate a constraint of linear amplitude response with a certain phase shift for an unbiased estimate of the true azimuth. In this way, linear amplitude response stochastic resonance is parametric modeled with gain-phase constraint, and achieved by the matched stochastic resonance theory with a maximized output SNR and a steady phase lag of π/2. The linear relation between the input and the output amplitude is simulative analyzed under different SNR conditions, which reflect a good linearity with the input amplitude A0 < 1. In contrary to the state-of-art complex acoustic intensity measurement (CAIM) method, a great improvement on estimation performance can be achieved, especially under low SNR conditions. This allows us a new point of view to enhance the vector DOA estimation in the assistance of nonlinear bistable SR effect, and can be a breakthrough innovation guidance for underwater acoustic remote sensing with vector sensors in the future.

Suggested Citation

  • Suo, Jian & Dong, Haitao & Shen, Xiaohong & Wang, Haiyan, 2020. "Bistable stochastic resonance with linear amplitude response enhanced vector DOA estimation under low SNR conditions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302253
    DOI: 10.1016/j.chaos.2020.109825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Yong Xu & Juanjuan Li & Jing Feng & Huiqing Zhang & Wei Xu & Jinqiao Duan, 2013. "Lévy noise-induced stochastic resonance in a bistable system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(5), pages 1-7, May.
    3. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Wang, Guancheng & Li, Qinrou & Liu, Shaoqing & Xiao, Hua & Zhang, Bob, 2022. "New zeroing neural network with finite-time convergence for dynamic complex-value linear equation and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    3. Guo, Yongfeng & Wang, Linjie & Dong, Qiang & Lou, Xiaojuan, 2021. "Dynamical complexity of FitzHugh–Nagumo neuron model driven by Lévy noise and Gaussian white noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 430-443.
    4. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    5. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Yue, Xiaole & Lv, Ge & Zhang, Ying, 2021. "Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Zhou, Bingchang & McDonnell, Mark D., 2015. "Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 659-667.
    8. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    14. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.
    18. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Suo, Jian & Wang, Haiyan & Lian, Wei & Dong, Haitao & Shen, Xiaohong & Yan, Yongsheng, 2023. "Feed-forward cascaded stochastic resonance and its application in ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.