IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v86y2013i5p1-710.1140-epjb-e2013-31115-4.html
   My bibliography  Save this article

Lévy noise-induced stochastic resonance in a bistable system

Author

Listed:
  • Yong Xu
  • Juanjuan Li
  • Jing Feng
  • Huiqing Zhang
  • Wei Xu
  • Jinqiao Duan

Abstract

The stochastic resonance phenomenon induced by Lévy noise in a second-order and under-damped bistable system is investigated. The signal-to-noise ratio for different parameters is computed by an efficient numerical scheme. The influences of the intensity and stability index of Lévy noise, as well as the amplitude of external signal on the occurrence of stochastic resonance phenomenon are characterized. The results imply that higher signal amplitude not only enhances the output power spectrum of system but also promotes stochastic resonance, and a proper adjustment of noise intensity in a certain range enlarges the peak value of output power spectrum which is significant for stochastic resonance. Moreover, with an appropriate damping parameter, lowering the stability index leads to larger fluctuations of Lévy noise, and further weakens the occurrence of the stochastic resonance. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Yong Xu & Juanjuan Li & Jing Feng & Huiqing Zhang & Wei Xu & Jinqiao Duan, 2013. "Lévy noise-induced stochastic resonance in a bistable system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(5), pages 1-7, May.
  • Handle: RePEc:spr:eurphb:v:86:y:2013:i:5:p:1-7:10.1140/epjb/e2013-31115-4
    DOI: 10.1140/epjb/e2013-31115-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2013-31115-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2013-31115-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suo, Jian & Dong, Haitao & Shen, Xiaohong & Wang, Haiyan, 2020. "Bistable stochastic resonance with linear amplitude response enhanced vector DOA estimation under low SNR conditions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Guo, Yong-Feng & Wei, Fang & Xi, Bei & Tan, Jian-Guo, 2018. "The instability probability density evolution of the bistable system driven by Gaussian colored noise and white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 200-208.
    3. Yue, Xiaole & Lv, Ge & Zhang, Ying, 2021. "Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Guo, Yongfeng & Wang, Linjie & Dong, Qiang & Lou, Xiaojuan, 2021. "Dynamical complexity of FitzHugh–Nagumo neuron model driven by Lévy noise and Gaussian white noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 430-443.
    5. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.
    7. Zhou, Bingchang & McDonnell, Mark D., 2015. "Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 659-667.
    8. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:86:y:2013:i:5:p:1-7:10.1140/epjb/e2013-31115-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.