IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007608.html
   My bibliography  Save this article

Solitons in spin-orbit-coupled systems with fractional spatial derivatives

Author

Listed:
  • Zeng, Liangwei
  • Belić, Milivoj R.
  • Mihalache, Dumitru
  • Wang, Qing
  • Chen, Junbo
  • Shi, Jincheng
  • Cai, Yi
  • Lu, Xiaowei
  • Li, Jingzhen

Abstract

We demonstrate the existence of various types of solitons in the spin-orbit-coupled systems with the fractional dimension based on Lévy random flights, including the systems with or without Zeeman splitting. Specifically, the systems without Zeeman splitting can support families of symmetric solitons, whereas the systems with Zeeman splitting can support families of stable asymmetric solitons. These coupled solitons may come in the form of fundamental single solitons or dipole solitons. The Lévy index, the strength of self- and cross-phase modulation, and the propagation constant strongly affect the waveforms and stability domains of coupled solitons. The stability and instability domains of such single and dipole solitons are calculated by the method of linear stability analysis and are confirmed by the numerical simulation of perturbed propagation. The general conclusion is that for the Lévy index close to 2, corresponding to the normal nonlinear optics, the solitons tend to be stable, while in the opposite case of Lévy index close to 1, corresponding to Cauchy random flights, the solitons tend to become unstable.

Suggested Citation

  • Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Wang, Qing & Chen, Junbo & Shi, Jincheng & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2021. "Solitons in spin-orbit-coupled systems with fractional spatial derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007608
    DOI: 10.1016/j.chaos.2021.111406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Symmetry breaking of spatial Kerr solitons in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Y.-J. Lin & K. Jiménez-García & I. B. Spielman, 2011. "Spin–orbit-coupled Bose–Einstein condensates," Nature, Nature, vol. 471(7336), pages 83-86, March.
    4. Victor Galitski & Ian B. Spielman, 2013. "Spin–orbit coupling in quantum gases," Nature, Nature, vol. 494(7435), pages 49-54, February.
    5. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Zhang, Li & He, Yingji, 2020. "Soliton dynamics in a fractional complex Ginzburg-Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Peng, Xi & He, Yingji, 2020. "Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xing & Xiang, Dan & Zeng, Liangwei, 2023. "Fundamental and multipole gap solitons in spin-orbit-coupled Bose-Einstein condensates with parity-time-symmetric Zeeman lattices," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Arnous, Ahmed H. & Biswas, Anjan & Yıldırım, Yakup & Zhou, Qin & Liu, Wenjun & Alshomrani, Ali S. & Alshehri, Hashim M., 2022. "Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. He, Shangling & Malomed, Boris A. & Mihalache, Dumitru & Peng, Xi & Yu, Xing & He, Yingji & Deng, Dongmei, 2021. "Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Li, S.R. & Bao, Y.Y. & Liu, Y.H. & Xu, T.F., 2022. "Bright solitons in fractional coupler with spatially periodical modulated nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Su, Weiwei & Deng, Hanying & Dong, Liangwei & Huang, Zhenfen & Huang, Changming, 2020. "Stabilization of fundamental solitons in the nonlinear fractional Schrödinger equation with PT-symmetric nonlinear lattices," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Merabti, Abdelouahab & Triki, Houria & Azzouzi, Faiçal & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah Kamis & EL-Akrmi, Abdessetar, 2020. "Propagation properties of chirped optical similaritons with dual-power law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Zhu, Xing, 2024. "Elliptical and rectangular solitons in media with competing cubic–quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Triki, Houria & Sun, Yunzhou & Zhou, Qin & Biswas, Anjan & Yıldırım, Yakup & Alshehri, Hashim M., 2022. "Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Raviola, Lisandro A. & De Leo, Mariano F., 2024. "Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    15. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Symmetry breaking of spatial Kerr solitons in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Khater, Mostafa M.A., 2022. "Nonparaxial pulse propagation in a planar waveguide with Kerr–like and quintic nonlinearities; computational simulations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Kengne, Emmanuel, 2021. "Modulational instability and soliton propagation in an alternate right-handed and left-handed multi-coupled nonlinear dissipative transmission network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Wang, Qing & Zhang, Lingling & Ke, Lin, 2022. "Parameters controlling of vortex solitons in nonlocal nonlinear medium with gradually characteristic length," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Rabie, Wafaa B. & Ahmed, Hamdy M., 2022. "Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.