IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1440-d578597.html
   My bibliography  Save this article

Multiple Novels and Accurate Traveling Wave and Numerical Solutions of the (2+1) Dimensional Fisher-Kolmogorov- Petrovskii-Piskunov Equation

Author

Listed:
  • Mostafa M. A. Khater

    (Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China
    Department of Mathematics, Obour High Institute for Engineering and Technology, Cairo 11828, Egypt
    These authors did all this work equally.)

  • Aliaa Mahfooz Alabdali

    (Faculty of Computing and information Technology Rabigh, King Abdulaziz University, Rabigh, Makkah 21911, Saudi Arabia
    These authors did all this work equally.)

Abstract

The analytical and numerical solutions of the (2+1) dimensional, Fisher-Kolmogorov-Petrovskii-Piskunov ((2+1) D-Fisher-KPP) model are investigated by employing the modified direct algebraic (MDA), modified Kudryashov (MKud.), and trigonometric-quantic B-spline (TQBS) schemes. This model, which arises in population genetics and nematic liquid crystals, describes the reaction–diffusion system by traveling waves in population genetics and the propagation of domain walls, pattern formation in bi-stable systems, and nematic liquid crystals. Many novel analytical solutions are constructed. These solutions are used to evaluate the requested numerical technique’s conditions. The numerical solutions of the considered model are studied, and the absolute value of error between analytical and numerical is calculated to demonstrate the matching between both solutions. Some figures are represented to explain the obtained analytical solutions and the match between analytical and numerical results. The used schemes’ performance shows their effectiveness and power and their ability to handle many nonlinear evolution equations.

Suggested Citation

  • Mostafa M. A. Khater & Aliaa Mahfooz Alabdali, 2021. "Multiple Novels and Accurate Traveling Wave and Numerical Solutions of the (2+1) Dimensional Fisher-Kolmogorov- Petrovskii-Piskunov Equation," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1440-:d:578597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiyong Qin & Mostafa M. A. Khater & Raghda A. M. Attia, 2020. "Copious Closed Forms of Solutions for the Fractional Nonlinear Longitudinal Strain Wave Equation in Microstructured Solids," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-8, April.
    2. Khater, Mostafa M.A. & Attia, Raghda A.M. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Lu, Dianchen, 2020. "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Abdel-Aty, Abdel-Haleem & Khater, Mostafa M.A. & Dutta, Hemen & Bouslimi, Jamel & Omri, M., 2020. "Computational solutions of the HIV-1 infection of CD4+T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khater, Mostafa M.A., 2022. "Nonparaxial pulse propagation in a planar waveguide with Kerr–like and quintic nonlinearities; computational simulations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah, & Ahmad, Saeed & Owyed, Saud & Abdel-Aty, Abdel-Haleem & Mahmoud, Emad E. & Shah, Kamal & Alrabaiah, Hussam, 2021. "Mathematical analysis of COVID-19 via new mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Martinez, V.M. & Barbosa, A.N. & Mancera, P.F.A. & Rodrigues, D.S. & Camargo, R.F., 2021. "A fractional calculus model for HIV dynamics: real data, parameter estimation and computational strategies," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Yüzbaşı, Şuayip & Izadi, Mohammad, 2022. "Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    9. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    10. Kumar, Manoj & Abbas, Syed, 2022. "Global dynamics of an age-structured model for HIV viral dynamics with latently infected T cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 237-252.
    11. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1440-:d:578597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.