IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p286-d490917.html
   My bibliography  Save this article

On the Approximate Solution of Partial Integro-Differential Equations Using the Pseudospectral Method Based on Chebyshev Cardinal Functions

Author

Listed:
  • Fairouz Tchier

    (Department of Mathematics, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
    These authors contributed equally to this work.)

  • Ioannis Dassios

    (AMPSAS, University College Dublin, D04 Dublin, Ireland
    These authors contributed equally to this work.)

  • Ferdous Tawfiq

    (Department of Mathematics, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
    These authors contributed equally to this work.)

  • Lakhdar Ragoub

    (Mathematics Department, University of Prince Mugrin, P.O. Box 41040, Madinah 42241, Saudi Arabia
    These authors contributed equally to this work.)

Abstract

In this paper, we apply the pseudospectral method based on the Chebyshev cardinal function to solve the parabolic partial integro-differential equations (PIDEs). Since these equations play a key role in mathematics, physics, and engineering, finding an appropriate solution is important. We use an efficient method to solve PIDEs, especially for the integral part. Unlike when using Chebyshev functions, when using Chebyshev cardinal functions it is no longer necessary to integrate to find expansion coefficients of a given function. This reduces the computation. The convergence analysis is investigated and some numerical examples guarantee our theoretical results. We compare the presented method with others. The results confirm the efficiency and accuracy of the method.

Suggested Citation

  • Fairouz Tchier & Ioannis Dassios & Ferdous Tawfiq & Lakhdar Ragoub, 2021. "On the Approximate Solution of Partial Integro-Differential Equations Using the Pseudospectral Method Based on Chebyshev Cardinal Functions," Mathematics, MDPI, vol. 9(3), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:286-:d:490917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imran Aziz & Imran Khan, 2017. "Numerical Solution of Partial Integrodifferential Equations of Diffusion Type," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, November.
    2. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Frédéric Abergel & Rémi Tachet, 2010. "A nonlinear partial integro-differential equation from mathematical finance," Post-Print hal-00611962, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Larsson & Shukun Long, 2024. "Markovian projections for It\^o semimartingales with jumps," Papers 2403.15980, arXiv.org.
    2. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Ivan Guo & Gregoire Loeper, 2018. "Path Dependent Optimal Transport and Model Calibration on Exotic Derivatives," Papers 1812.03526, arXiv.org, revised Sep 2020.
    4. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    5. Ashish Rayal & Bhagawati Prasad Joshi & Mukesh Pandey & Delfim F. M. Torres, 2023. "Numerical Investigation of the Fractional Oscillation Equations under the Context of Variable Order Caputo Fractional Derivative via Fractional Order Bernstein Wavelets," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    6. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2020. "Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Acciaio, Beatrice & Guyon, Julien, 2020. "Short communication: inversion of convex ordering: local volatility does not maximise the price of VIX futures," LSE Research Online Documents on Economics 102984, London School of Economics and Political Science, LSE Library.
    8. Mao Fabrice Djete, 2022. "Non--regular McKean--Vlasov equations and calibration problem in local stochastic volatility models," Papers 2208.09986, arXiv.org, revised Oct 2024.
    9. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    10. Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Frédéric Abergel & Rémy Tachet Des Combes & Riadh Zaatour, 2017. "Nonparametric model calibration for derivatives," Post-Print hal-01686114, HAL.
    12. Frédéric Abergel & Rémy Tachet Des Combes & Riadh Zaatour, 2017. "Nonparametric model calibration for derivatives," Post-Print hal-01399542, HAL.
    13. Ivan Guo & Grégoire Loeper & Shiyi Wang, 2022. "Calibration of local‐stochastic volatility models by optimal transport," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 46-77, January.
    14. Beatrice Acciaio & Julien Guyon, 2019. "Inversion of Convex Ordering: Local Volatility Does Not Maximize the Price of VIX Futures," Papers 1910.05750, arXiv.org.
    15. Christoph Reisinger & Maria Olympia Tsianni, 2023. "Convergence of the Euler--Maruyama particle scheme for a regularised McKean--Vlasov equation arising from the calibration of local-stochastic volatility models," Papers 2302.00434, arXiv.org, revised Aug 2023.
    16. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:286-:d:490917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.