IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v88y2016icp100-106.html
   My bibliography  Save this article

A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE

Author

Listed:
  • Ballestra, Luca Vincenzo
  • Cecere, Liliana

Abstract

We develop a highly efficient procedure to forecast the parameters of the constant elasticity of variance (CEV) model implied by American options. In particular, first of all, the American option prices predicted by the CEV model are calculated using an accurate and fast finite difference scheme. Then, the parameters of the CEV model are obtained by minimizing the distance between theoretical and empirical option prices, which yields an optimization problem that is solved using an ad-hoc numerical procedure. The proposed approach, which turns out to be very efficient from the computational standpoint, is used to test the goodness-of-fit of the CEV model in predicting the prices of American options traded on the NYSE. The results obtained reveal that the CEV model does not provide a very good agreement with real market data and yields only a marginal improvement over the more popular Black–Scholes model.

Suggested Citation

  • Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
  • Handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:100-106
    DOI: 10.1016/j.chaos.2015.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915004014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Y.L. & Lin, T.I. & Lee, C.F., 2008. "Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 60-71.
    2. Kim, Jeong-Hoon & Lee, Min-Ku & Sohn, So Young, 2014. "Investment timing under hybrid stochastic and local volatility," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 58-72.
    3. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    4. Swidler, Steve & Diltz, J. David, 1992. "Implied volatilities and Transaction Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(3), pages 437-447, September.
    5. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    6. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    9. Xiao, Jianwu & Hong, Zhai & Qin, Chenglin, 2007. "The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 302-310, March.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    13. Sam Howison & Mario Steinberg, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 63-89.
    14. Lauterbach, Beni & Schultz, Paul, 1990. "Pricing Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives," Journal of Finance, American Finance Association, vol. 45(4), pages 1181-1209, September.
    15. C. F. Lee & Ta-Peng Wu & Ren-Raw Chen, 2004. "The Constant Elasticity of Variance Models: New Evidence from S&P 500 Index Options," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 173-190.
    16. Angelo Melino & Stuart M. Turnbull, 1991. "The Pricing of Foreign Currency Options," Canadian Journal of Economics, Canadian Economics Association, vol. 24(2), pages 251-281, May.
    17. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    18. Yin Zhao & Tan Chang, 2014. "The Differential Algorithm for American Put Option with Transaction Costs under CEV Model," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 401-410, October.
    19. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
    20. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    21. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    22. Yoon, Ji-Hun, 2015. "Pricing perpetual American options under multiscale stochastic elasticity of variance," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 14-26.
    23. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    24. Luca Vincenzo Ballestra & Graziella Pacelli, 2011. "The constant elasticity of variance model: calibration, test and evidence from the Italian equity market," Applied Financial Economics, Taylor & Francis Journals, vol. 21(20), pages 1479-1487.
    25. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    26. Yuen, K.C. & Yang, H. & Chu, K.L., 2001. "Estimation in the Constant Elasticity of Variance Model," British Actuarial Journal, Cambridge University Press, vol. 7(2), pages 275-292, June.
    27. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.
    28. Sam Howison, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 2: Bermudan Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 91-104.
    29. Chuang‐Chang Chang & San‐Lin Chung & Richard C. Stapleton, 2007. "Richardson extrapolation techniques for the pricing of American‐style options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(8), pages 791-817, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    2. Duarte Queirós, Sílvio M. & Anteneodo, Celia, 2016. "Complexity in quantitative finance and economics," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 1-2.
    3. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    4. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    5. Malik Zaka Ullah, 2019. "Numerical Solution of Heston-Hull-White Three-Dimensional PDE with a High Order FD Scheme," Mathematics, MDPI, vol. 7(8), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    3. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    4. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    5. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    6. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    9. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    10. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    11. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    12. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    13. K. C. Chen & R. Stephen Sears & Manuchehr Shahrokhi, 1992. "Pricing Nikkei Put Warrants: Some Empirical Evidence," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 15(3), pages 231-251, September.
    14. Carlos Miguel Glória & José Carlos Dias & Aricson Cruz, 2024. "Pricing levered warrants under the CEV diffusion model," Review of Derivatives Research, Springer, vol. 27(1), pages 55-84, April.
    15. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    16. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    17. Olesia Verchenko, 2011. "Testing option pricing models: complete and incomplete markets," Discussion Papers 38, Kyiv School of Economics.
    18. Jiefei Yang & Guanglian Li, 2023. "On Sparse Grid Interpolation for American Option Pricing with Multiple Underlying Assets," Papers 2309.08287, arXiv.org, revised Sep 2023.
    19. Ballestra, Luca Vincenzo & Cecere, Liliana, 2015. "Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley," Finance Research Letters, Elsevier, vol. 14(C), pages 45-55.
    20. Rad, Jamal Amani & Parand, Kourosh & Ballestra, Luca Vincenzo, 2015. "Pricing European and American options by radial basis point interpolation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 363-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:88:y:2016:i:c:p:100-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.