IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v89y2024ipap582-593.html
   My bibliography  Save this article

A finite element approach to the numerical solutions of Leland’s model

Author

Listed:
  • Wei, Dongming
  • Erlangga, Yogi Ahmad
  • Zhumakhanova, Gulzat

Abstract

In this paper, finite element method is applied to Leland’s model for numerical simulation of option pricing with transaction costs. Spatial finite element models based on P1 and/or P2 elements are formulated in combination with a Crank–Nicolson-type temporal scheme. The temporal scheme is implemented using the Rannacher approach. Examples with several sets of parameter values are presented and compared with finite difference results in the literature. Spatial–temporal mesh-size ratios are observed for controlling the stability of our method. Our results compare favourably with the finite difference results in the literature for the model.

Suggested Citation

  • Wei, Dongming & Erlangga, Yogi Ahmad & Zhumakhanova, Gulzat, 2024. "A finite element approach to the numerical solutions of Leland’s model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 582-593.
  • Handle: RePEc:eee:reveco:v:89:y:2024:i:pa:p:582-593
    DOI: 10.1016/j.iref.2023.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023002873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Golbabai, A. & Ballestra, L.V. & Ahmadian, D., 2013. "Superconvergence of the finite element solutions of the Black–Scholes equation," Finance Research Letters, Elsevier, vol. 10(1), pages 17-26.
    3. Bertram Düring & Michel Fournié & Ansgar Jüngel, 2003. "High Order Compact Finite Difference Schemes for a Nonlinear Black-Scholes Equation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 767-789.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    6. Christara, Christina C. & Wu, Ruining, 2022. "Penalty and penalty-like methods for nonlinear HJB PDEs," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374, October.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    10. Leland, Hayne E., 2007. "Comments on "Hedging errors with Leland's option model in the presence of transactions costs"," Finance Research Letters, Elsevier, vol. 4(3), pages 200-202, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria do Rosário Grossinho & Yaser Kord Faghan & Daniel Ševčovič, 2017. "Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(4), pages 291-308, December.
    2. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    3. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    4. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    5. Bas Peeters & Cees L. Dert & André Lucas, 2003. "Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong," Tinbergen Institute Discussion Papers 03-090/2, Tinbergen Institute.
    6. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    9. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    10. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    11. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations," Papers 1707.00356, arXiv.org.
    12. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    13. Maria do Rosario Grossinho & Yaser Kord Faghan & Daniel Sevcovic, 2016. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1611.00885, arXiv.org, revised Nov 2017.
    14. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    15. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    16. Raymond Chiang & John Okunev & Mark Tippett, 1997. "Stochastic interest rates, transaction costs, and immunizing foreign currency risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(5), pages 579-598, August.
    17. Ahmadian, D. & Farkhondeh Rouz, O. & Ivaz, K. & Safdari-Vaighani, A., 2020. "Robust numerical algorithm to the European option with illiquid markets," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    18. Yingzi Chen & Wansheng Wang & Aiguo Xiao, 2019. "An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1565-1591, April.
    19. Karol Duris & Shih-Hau Tan & Choi-Hong Lai & Daniel Sevcovic, 2015. "Comparison of the analytical approximation formula and Newton's method for solving a class of nonlinear Black-Scholes parabolic equations," Papers 1511.05661, arXiv.org, revised Nov 2015.
    20. Fischer, Georg, 2019. "How dynamic hedging affects stock price movements: Evidence from German option and certificate markets," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-35-19, University of Passau, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:89:y:2024:i:pa:p:582-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.