IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v251y2015icp318-330.html
   My bibliography  Save this article

Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs

Author

Listed:
  • Lesmana, Donny Citra
  • Wang, Song

Abstract

We propose a penalty method for a finite-dimensional nonlinear complementarity problem (NCP) arising from the discretization of the infinite-dimensional free boundary/obstacle problem governing the valuation of American options under transaction costs. In this method, the NCP is approximated by a system of nonlinear equations containing a power penalty term. We show that the mapping involved in the system is continuous and strongly monotone. Thus, the unique solvability of both the NCP and the penalty equation and the exponential convergence of the solution to the penalty equation to that of the NCP are guaranteed by an existing theory. Numerical results will be presented to demonstrate the convergence rates and usefulness of this penalty method.

Suggested Citation

  • Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
  • Handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:318-330
    DOI: 10.1016/j.amc.2014.11.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314015926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    6. Pascal Heider, 2010. "Numerical Methods for Non-Linear Black-Scholes Equations," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(1), pages 59-81.
    7. W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.
    8. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    2. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    3. Pedro Polvora & Daniel Sevcovic, 2021. "Utility indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation," Papers 2108.12598, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xiaoping & Yan, Dong & Zhu, Song-Ping, 2022. "Optimal exercise of American puts with transaction costs under utility maximization," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    2. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    3. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    4. W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.
    5. Karol Duris & Shih-Hau Tan & Choi-Hong Lai & Daniel Sevcovic, 2015. "Comparison of the analytical approximation formula and Newton's method for solving a class of nonlinear Black-Scholes parabolic equations," Papers 1511.05661, arXiv.org, revised Nov 2015.
    6. Nicola Cantarutti & Jo~ao Guerra & Manuel Guerra & Maria do Ros'ario Grossinho, 2016. "Option pricing in exponential L\'evy models with transaction costs," Papers 1611.00389, arXiv.org, revised Nov 2019.
    7. Stefano Baccarin, 2019. "Static use of options in dynamic portfolio optimization under transaction costs and solvency constraints," Working papers 063, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    8. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
    9. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    10. Wei, Dongming & Erlangga, Yogi Ahmad & Zhumakhanova, Gulzat, 2024. "A finite element approach to the numerical solutions of Leland’s model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 582-593.
    11. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    13. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    14. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    15. Dichtl, Hubert & Drobetz, Wolfgang, 2011. "Portfolio insurance and prospect theory investors: Popularity and optimal design of capital protected financial products," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1683-1697, July.
    16. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    17. Bas Peeters & Cees L. Dert & André Lucas, 2003. "Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong," Tinbergen Institute Discussion Papers 03-090/2, Tinbergen Institute.
    18. Baule, Rainer & Münchhalfen, Patrick & Shkel, David & Tallau, Christian, 2023. "Fair-washing in the market for structured retail products? Voluntary self-regulation versus government regulation," Journal of Banking & Finance, Elsevier, vol. 148(C).
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:318-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.