IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v116y2018icp14-21.html
   My bibliography  Save this article

New numerical method and application to Keller-Segel model with fractional order derivative

Author

Listed:
  • Atangana, Abdon
  • Alqahtani, Rubayyi T.

Abstract

Using the fundamental theorem of fractional calculus together with the well-known Lagrange polynomial interpolation, we constructed a new numerical scheme. The new numerical scheme is suggested to solve non-linear and linear partial differential equation with fractional order derivative. The method was used to solve numerically the time fractional Keller-Segel model. The existence and uniqueness solution of the model with fractional Mittag-Leffler kernel derivative are presented in detail. Some simulations are performed to access the efficiency of the newly proposed method.

Suggested Citation

  • Atangana, Abdon & Alqahtani, Rubayyi T., 2018. "New numerical method and application to Keller-Segel model with fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 14-21.
  • Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:14-21
    DOI: 10.1016/j.chaos.2018.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918308154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdeljawad, Thabet & Baleanu, Dumitru, 2017. "Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 106-110.
    2. Al-Mdallal, Qasem M. & Abu Omer, Ahmed S., 2018. "Fractional-order Legendre-collocation method for solving fractional initial value problems," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 74-84.
    3. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tajadodi, H., 2020. "A Numerical approach of fractional advection-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    3. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    6. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    9. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    3. Yadav, Swati & Pandey, Rajesh K. & Shukla, Anil K., 2019. "Numerical approximations of Atangana–Baleanu Caputo derivative and its application," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 58-64.
    4. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    5. Abdeljawad, Thabet, 2018. "Different type kernel h−fractional differences and their fractional h−sums," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 146-156.
    6. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    8. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    9. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    10. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    11. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    12. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    13. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    14. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Bonyah, Ebenezer, 2018. "Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 316-331.
    18. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    19. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    20. Jarad, Fahd & Abdeljawad, Thabet & Hammouch, Zakia, 2018. "On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 16-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:14-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.