IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1876-d1415921.html
   My bibliography  Save this article

Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method

Author

Listed:
  • Annamalai Meenakshi

    (Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India)

  • Elango Renuga

    (Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
    Department of Mathematics, M.O.P. Vaishnav College for Women (Autonomous), Chennai 600034, India)

  • Robert Čep

    (Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Krishnasamy Karthik

    (Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India)

Abstract

Around the world, the people are simultaneously susceptible to or infected with several infections. This work aims at the analysis of the dynamics of transmission of two deadly viruses, COVID-19 and Influenza, using a co-infection epidemiological model by applying the Caputo fractional derivative. Fractional differential equations are currently used worldwide to model physical and biological phenomena. Our comprehension of complicated phenomena is improved when fractional-order derivatives are used to model systems with memory effects and long-range interactions. Mathematical depictions of infectious disease dynamics and dissemination across communities are provided by epidemiological models, which are essential resources for understanding and controlling infectious diseases. These models support informed decision making to prevent outbreaks, evaluate intervention measures, and help researchers and policymakers understand how diseases spread. A subclass of epidemiological models called co-infection models focuses on studying the dynamics of several infectious illnesses that occur in the same population at the same time. They are especially useful in situations where people are simultaneously susceptible to or infected with several infections. Co-infection models provide information on the development of effective control techniques, the progression of disease, and the interactions between several pathogens. The qualitative study via stability analysis is discussed at equilibrium, the reproduction number R 0 is computed, and the results are simulated using the Laplace Adomian Decomposition Method (LADM) for Fractional Differential Equations. We employ MATLAB R2023a for graphical presentations and numerical simulations.

Suggested Citation

  • Annamalai Meenakshi & Elango Renuga & Robert Čep & Krishnasamy Karthik, 2024. "Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1876-:d:1415921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suheil A. Khuri, 2001. "A Laplace decomposition algorithm applied to a class of nonlinear differential equations," Journal of Applied Mathematics, Hindawi, vol. 1, pages 1-15, January.
    2. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    4. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    8. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    9. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2020. "A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    11. Yadav, Swati & Pandey, Rajesh K. & Shukla, Anil K., 2019. "Numerical approximations of Atangana–Baleanu Caputo derivative and its application," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 58-64.
    12. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Kachia, Krunal & Solís-Pérez, J.E. & Gómez-Aguilar, J.F., 2020. "Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    15. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    16. Zheng, Xiangcheng & Wang, Hong & Fu, Hongfei, 2020. "Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    18. Muhammed I. Syam, 2017. "A Numerical Solution of Fractional Lienard’s Equation by Using the Residual Power Series Method," Mathematics, MDPI, vol. 6(1), pages 1-9, December.
    19. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    20. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1876-:d:1415921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.