IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v108y2018icp187-195.html
   My bibliography  Save this article

Mechanical analysis and bound of plasma chaotic system

Author

Listed:
  • Yang, Yingjuan
  • Qi, Guoyuan

Abstract

Plasma is normally investigated via fluid dynamics, and to investigate the force and energy underlying a plasma chaotic system, it is first transformed into a Kolmogorov-type system. This system describes a general form of fluid and forced-dissipative rigid body system. The vector field of the plasma chaotic system is decomposed into four types of torque: inertial torque, internal torque, dissipation, and external torque. The Hamiltonian energy transfer between kinetic energy and potential is discovered. The various combinations of these four types of torque are constructed to uncover the effect of each on the generation of the dynamic mode of the chaotic system. The physical functions of the whistler and dampening of the pump are identified in producing the different plasma dynamics. Aside from the torque effects, the rate of change of the Casimir function is also a key factor in characterizing the orbit behavior of the plasma system. Last, a supremum bound of the plasma chaotic attractor is proposed.

Suggested Citation

  • Yang, Yingjuan & Qi, Guoyuan, 2018. "Mechanical analysis and bound of plasma chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 187-195.
  • Handle: RePEc:eee:chsofr:v:108:y:2018:i:c:p:187-195
    DOI: 10.1016/j.chaos.2018.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918300353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    2. Qi, Guoyuan & Chen, Guanrong & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Zhang, Yuhui, 2008. "A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 705-721.
    3. Karakatsanis, L.P. & Pavlos, G.P. & Xenakis, M.N., 2013. "Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3920-3944.
    4. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    5. Qi, Guoyuan & Zhang, Jiangfeng, 2017. "Energy cycle and bound of Qi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 7-15.
    6. El-Tantawy, S.A., 2016. "Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar KdV- and mkdV-soliton collisions," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 162-168.
    7. Pelino, Vinicio & Maimone, Filippo & Pasini, Antonello, 2014. "Energy cycle for the Lorenz attractor," Chaos, Solitons & Fractals, Elsevier, vol. 64(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Bi, Haiyun & Qi, Guoyuan & Hu, Jianbing & Faradja, Philippe & Chen, Guanrong, 2020. "Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Haiyun Bi & Guoyuan Qi & Jianbing Hu, 2019. "Modeling and Analysis of Chaos and Bifurcations for the Attitude System of a Quadrotor Unmanned Aerial Vehicle," Complexity, Hindawi, vol. 2019, pages 1-16, October.
    3. Qi, Guoyuan & Zhang, Jiangfeng, 2017. "Energy cycle and bound of Qi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 7-15.
    4. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    5. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    7. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Bi, Haiyun & Qi, Guoyuan & Hu, Jianbing & Faradja, Philippe & Chen, Guanrong, 2020. "Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Guoyuan Qi & Xiaogang Yang, 2019. "Modeling of a Chaotic Gyrostat System and Mechanism Analysis of Dynamics Using Force and Energy," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    10. Yang, Shuangling & Qu, Jingjia, 2021. "On first integrals of a family of generalized Lorenz-like systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    12. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    13. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    14. Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    15. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    19. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    20. Wu, Jiening & Wang, Lidan & Chen, Guanrong & Duan, Shukai, 2016. "A memristive chaotic system with heart-shaped attractors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 20-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:108:y:2018:i:c:p:187-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.