IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v99y2017icp7-15.html
   My bibliography  Save this article

Energy cycle and bound of Qi chaotic system

Author

Listed:
  • Qi, Guoyuan
  • Zhang, Jiangfeng

Abstract

The Qi chaotic system is transformed into a Kolmogorov-type system, thereby facilitating the analysis of energy exchange in its different forms. Regarding four forms of energy, the vector field of this chaotic system is decomposed into four forms of torque: inertial, internal, dissipative, and external. The rate of change of the Casimir function is equal to the exchange power between the dissipative energy and the supplied energy. The exchange power governs the orbital behavior and the cycling of energy. With the rate of change of Casimir function, a general bound and least upper bound of the Qi chaotic attractor are proposed. A detailed analysis with illustrations is conducted to uncover insights, in particular, cycling among the different types of energy for this chaotic attractor and key factors producing the different types of dynamic modes.

Suggested Citation

  • Qi, Guoyuan & Zhang, Jiangfeng, 2017. "Energy cycle and bound of Qi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 7-15.
  • Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:7-15
    DOI: 10.1016/j.chaos.2017.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelino, Vinicio & Maimone, Filippo & Pasini, Antonello, 2014. "Energy cycle for the Lorenz attractor," Chaos, Solitons & Fractals, Elsevier, vol. 64(C), pages 67-77.
    2. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    3. Qi, Guoyuan & Chen, Guanrong & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Zhang, Yuhui, 2008. "A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 705-721.
    4. Yang, Jihua & Zhao, Liqin, 2015. "Bifurcation analysis and chaos control of the modified Chua’s circuit system," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 332-339.
    5. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Yang, Yingjuan & Qi, Guoyuan, 2018. "Mechanical analysis and bound of plasma chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 187-195.
    3. Haiyun Bi & Guoyuan Qi & Jianbing Hu, 2019. "Modeling and Analysis of Chaos and Bifurcations for the Attitude System of a Quadrotor Unmanned Aerial Vehicle," Complexity, Hindawi, vol. 2019, pages 1-16, October.
    4. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Guoyuan Qi & Xiaogang Yang, 2019. "Modeling of a Chaotic Gyrostat System and Mechanism Analysis of Dynamics Using Force and Energy," Complexity, Hindawi, vol. 2019, pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yingjuan & Qi, Guoyuan, 2018. "Mechanical analysis and bound of plasma chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 187-195.
    2. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    3. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Bi, Haiyun & Qi, Guoyuan & Hu, Jianbing & Faradja, Philippe & Chen, Guanrong, 2020. "Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    6. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    8. Usama, B.I. & Morfu, S. & Marquie, P., 2021. "Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    10. Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    11. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Halder, Kaushik & Panda, Deepak Kumar & Das, Saptarshi & Das, Sourav & Gupta, Amitava, 2022. "Specified QoS based networked observer and PI controller design with disturbance and noise rejection under random packet dropout," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Qi, Guoyuan & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Chen, Guanrong, 2009. "A new hyperchaotic system and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2544-2549.
    14. Guohui Li & Xiangyu Zhang & Hong Yang, 2019. "Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    15. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    16. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    17. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    18. Zhang, Jianxiong & Tang, Wansheng, 2009. "Analysis and control for a new chaotic system via piecewise linear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2181-2190.
    19. Daniel Ríos-Rivera & Alma Y. Alanis & Edgar N. Sanchez, 2020. "Neural-Impulsive Pinning Control for Complex Networks Based on V-Stability," Mathematics, MDPI, vol. 8(9), pages 1-20, August.
    20. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:7-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.