IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v505y2018icp398-412.html
   My bibliography  Save this article

A simple analytics framework for evaluating mean escape time in different term structures with stochastic volatility

Author

Listed:
  • Ko, Bonggyun
  • Song, Jae Wook

Abstract

The aim of this paper is to propose a simple framework for analyzing the mean escape time of interest rate product in different term structures with stochastic volatility. In the modeling perspective, we utilize the one factor Hull–White model to design the dynamics of interest rate returns whose stochastic volatility term is assumed to follow the Cox–Ingersoll–Ross process. Furthermore, we apply the Nelson–Siegel function to simulate various scenarios of term structure based on the US Treasury bill and European bond. Then, we analyze the mean escape time surfaces of different term structures for theoretical flat yield curves and two empirical S-shaped yield curves whose term structures of short-, mid-, and long-term maturities are shifted by the modified parameters of the Nelson–Siegel function. We observe that the survival probability begins with one and reduces to zero with different rate of decay for different interest rates and volatilities. Furthermore, the results of empirical term structures imply that the adjustment in the yield of long-term maturity changes the structure of MET surface more significantly than that of short- and long-term maturities. Lastly, we detect the noise enhanced stability phenomenon from the mean escape time for all cases of flat yield, Treasury bill, and European bond.

Suggested Citation

  • Ko, Bonggyun & Song, Jae Wook, 2018. "A simple analytics framework for evaluating mean escape time in different term structures with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 398-412.
  • Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:398-412
    DOI: 10.1016/j.physa.2018.02.187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302802
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    3. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    6. Lisa Borland, 2002. "Option Pricing Formulas based on a non-Gaussian Stock Price Model," Papers cond-mat/0204331, arXiv.org, revised Sep 2002.
    7. Lee, Minhyuk & Song, Jae Wook & Park, Ji Hwan & Chang, Woojin, 2017. "Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 28-38.
    8. Valenti, Davide & Spagnolo, Bernardo & Bonanno, Giovanni, 2007. "Hitting time distributions in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 311-320.
    9. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    10. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    11. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    12. Dias, João, 2012. "Sovereign debt crisis in the European Union: A minimum spanning tree approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2046-2055.
    13. Jaume Masoliver & Josep Perello, 2008. "The escape problem under stochastic volatility: the Heston model," Papers 0807.1014, arXiv.org.
    14. Bonggyun Ko & Jae Wook Song & Woojin Chang, 2016. "Simulation of financial market via nonlinear Ising model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(04), pages 1-15, April.
    15. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    16. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    17. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    18. Ko, Bonggyun & Song, Jae Wook & Chang, Woojin, 2018. "Crash forecasting in the Korean stock market based on the log-periodic structure and pattern recognition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 308-323.
    19. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    20. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    21. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    22. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    23. Pierre Cizeau & Yanhui Liu & Martin Meyer & C. -K. Peng & H. Eugene Stanley, 1997. "Volatility distribution in the S&P500 Stock Index," Papers cond-mat/9708143, arXiv.org.
    24. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    25. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    26. Jaume Masoliver & Josep Perello, 2009. "First-passage and risk evaluation under stochastic volatility," Papers 0902.2735, arXiv.org.
    27. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    28. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    29. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    30. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    31. Cizeau, Pierre & Liu, Yanhui & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Volatility distribution in the S&P500 stock index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 441-445.
    32. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    33. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    34. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    35. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    36. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    37. Li, Jiang-Cheng & Mei, Dong-Cheng, 2013. "The influences of delay time on the stability of a market model with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 763-772.
    38. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    2. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    4. Zhong, Guang-Yan & He, Feng & Li, Jiang-Cheng & Mei, Dong-Cheng & Tang, Nian-Sheng, 2019. "Coherence resonance-like and efficiency of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    6. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Wu, Anshun & Dong, Yang & Luo, Yuhui & Zeng, Chunhua, 2020. "Fluctuations-induced regime shifts in the Endogenous Credit system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    9. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    10. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    11. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    12. Wali Ullah, 2017. "Term structure forecasting in affine framework with time-varying volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 453-483, August.
    13. Chen, Yan & Mo, Dongxu & Xu, Zezhou, 2022. "A study of interconnections and contagion among Chinese financial institutions using a ΔCoV aR network," Finance Research Letters, Elsevier, vol. 45(C).
    14. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    15. Li, Jiang-Cheng & Xu, Ming-Zhe & Han, Xu & Tao, Chen, 2022. "Dynamic risk resonance between crude oil and stock market by econophysics and machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. Wang, Qizhen & Zhu, Yingming & Yang, Liansheng & Mul, Remco A.H., 2017. "Coupling detrended fluctuation analysis of Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 337-350.
    17. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    18. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    19. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Lee, Minhyuk & Song, Jae Wook & Park, Ji Hwan & Chang, Woojin, 2017. "Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 28-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:398-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.