IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v336y2004i3p245-251.html
   My bibliography  Save this article

Fractional diffusion equation for a power-law-truncated Lévy process

Author

Listed:
  • Sokolov, I.M
  • Chechkin, A.V
  • Klafter, J

Abstract

Truncated Lévy flights are stochastic processes which display a crossover from a heavy-tailed Lévy behavior to a faster decaying probability distribution function (pdf). Putting less weight on long flights overcomes the divergence of the Lévy distribution second moment. We introduce a fractional generalization of the diffusion equation, whose solution defines a process in which a Lévy flight of exponent α is truncated by a power-law of exponent 5−α. A closed form for the characteristic function of the process is derived. The pdf of the displacement slowly converges to a Gaussian in its central part showing however a power-law far tail. Possible applications are discussed.

Suggested Citation

  • Sokolov, I.M & Chechkin, A.V & Klafter, J, 2004. "Fractional diffusion equation for a power-law-truncated Lévy process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 245-251.
  • Handle: RePEc:eee:phsmap:v:336:y:2004:i:3:p:245-251
    DOI: 10.1016/j.physa.2003.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103011932
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
    2. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    3. Sandev, Trifce & Sokolov, Igor M. & Metzler, Ralf & Chechkin, Aleksei, 2017. "Beyond monofractional kinetics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 210-217.
    4. Romanovsky, M.Yu. & Vidov, P.V., 2011. "Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3794-3805.
    5. Chakrabarty, Arijit & Meerschaert, Mark M., 2011. "Tempered stable laws as random walk limits," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 989-997, August.
    6. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    7. Garanina, O.S. & Romanovsky, M.Yu., 2015. "New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 1-9.
    8. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    9. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:336:y:2004:i:3:p:245-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.