Fractional diffusion equation for a power-law-truncated Lévy process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2003.12.044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
- Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007.
"Fractional diffusion models of option prices in markets with jumps,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
- Alvaro Cartea & Diego del-Castillo-Negrete, 2006. "Fractional Diffusion Models of Option Prices in Markets with Jumps," Birkbeck Working Papers in Economics and Finance 0604, Birkbeck, Department of Economics, Mathematics & Statistics.
- Sandev, Trifce & Sokolov, Igor M. & Metzler, Ralf & Chechkin, Aleksei, 2017. "Beyond monofractional kinetics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 210-217.
- Romanovsky, M.Yu. & Vidov, P.V., 2011. "Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3794-3805.
- Chakrabarty, Arijit & Meerschaert, Mark M., 2011. "Tempered stable laws as random walk limits," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 989-997, August.
- Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
- Garanina, O.S. & Romanovsky, M.Yu., 2015. "New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 1-9.
- Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
- Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
More about this item
Keywords
Truncated Lévy flights; Fractional kinetics; Distributed-order diffusion equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:336:y:2004:i:3:p:245-251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.