IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v124y2019icp86-96.html
   My bibliography  Save this article

Analytic approaches of the anomalous diffusion: A review

Author

Listed:
  • dos Santos, Maike A.F.

Abstract

This review article aims to stress and reunite some of the analytic formalism of the anomalous diffusive processes that have succeeded in their description. Also, it has the objective to discuss which of the new directions they have taken nowadays. The discussion is started by a brief historical report that starts with the studies of thermal machines and combines in theories such as the statistical mechanics of Boltzmann–Gibbs and the Brownian Movement. In this scenario, in the twentieth century, a series of experiments were reported that were not described by the usual model of diffusion. Such experiments paved the way for deeper investigation into anomalous diffusion, i.e. 〈(x−〈x〉)2〉∝tα. These processes are very abundant in physics, and the mechanisms for them to occur are diverse. For this reason, there are many possible ways of modelling the diffusive processes. This article discusses three analytic approaches to investigate anomalous diffusion: fractional diffusion equation, nonlinear diffusion equation and Langevin equation in the presence of fractional, coloured or multiplicative noises. All these formalisms presented different degrees of complexity and for this reason, they have succeeded in describing anomalous diffusion phenomena.

Suggested Citation

  • dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
  • Handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:86-96
    DOI: 10.1016/j.chaos.2019.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
    2. Fernandez, Arran & Baleanu, Dumitru & Fokas, Athanassios S., 2018. "Solving PDEs of fractional order using the unified transform method," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 738-749.
    3. P. H. Chavanis, 2008. "Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(2), pages 179-208, March.
    4. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Invariance principles for tempered fractionally integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3419-3438.
    5. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    6. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    7. Michael, Fredrick & Johnson, M.D., 2003. "Financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 525-534.
    8. Picoli, S. & Mendes, R.S. & Malacarne, L.C., 2003. "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 678-688.
    9. Atangana, Abdon & Alqahtani, Rubayyi T., 2018. "New numerical method and application to Keller-Segel model with fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 14-21.
    10. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.
    11. V. Schwämmle & E. M.F. Curado & F. D. Nobre, 2009. "Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 107-116, July.
    12. Liemert, André & Sandev, Trifce & Kantz, Holger, 2017. "Generalized Langevin equation with tempered memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 356-369.
    13. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    14. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    15. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    16. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    17. S. M.D. Queirós & L. G. Moyano & J. de Souza & C. Tsallis, 2007. "A nonextensive approach to the dynamics of financial observables," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 161-167, January.
    18. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    19. V. Schwämmle & F. D. Nobre & C. Tsallis, 2008. "q-Gaussians in the porous-medium equation: stability and time evolution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(4), pages 537-546, December.
    20. Luiz G A Alves & Débora B Scariot & Renato R Guimarães & Celso V Nakamura & Renio S Mendes & Haroldo V Ribeiro, 2016. "Transient Superdiffusion and Long-Range Correlations in the Motility Patterns of Trypanosomatid Flagellate Protozoa," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    21. Maike A. F. dos Santos & Marcelo K. Lenzi & Ervin K. Lenzi, 2017. "Anomalous Diffusion with an Irreversible Linear Reaction and Sorption-Desorption Process," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Khalili Golmankhaneh & Renat Timergalievich Sibatov, 2021. "Fractal Stochastic Processes on Thin Cantor-Like Sets," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    2. dos Santos, M.A.F. & Colombo, E.H. & Anteneodo, C., 2021. "Random diffusivity scenarios behind anomalous non-Gaussian diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Aranda, Orestes Tumbarell & Penna, André L.A. & Oliveira, Fernando A., 2021. "Nonlocal pattern formation effects in evolutionary population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Serrano, Alfredo Blanco & Allen-Perkins, Alfonso & Andrade, Roberto Fernandes Silva, 2022. "Efficient approach to time-dependent super-diffusive Lévy random walks on finite 2D-tori using circulant analogues," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    5. Shi, Hong-Da & Du, Lu-Chun & Huang, Fei-Jie & Guo, Wei, 2022. "Collective topological active particles: Non-ergodic superdiffusion and ageing in complex environments," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    2. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    3. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    4. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    5. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    6. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    7. Kris Brabanter & Farzad Sabzikar, 2021. "Asymptotic theory for regression models with fractional local to unity root errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 997-1024, October.
    8. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    9. Beran, Jan & Sabzikar, Farzad & Surgailis, Donatas & Telkmann, Klaus, 2020. "On the empirical process of tempered moving averages," Statistics & Probability Letters, Elsevier, vol. 167(C).
    10. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    12. Cirto, Leonardo J.L. & Assis, Vladimir R.V. & Tsallis, Constantino, 2014. "Influence of the interaction range on the thermostatistics of a classical many-body system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 286-296.
    13. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. da Silva, Sérgio Luiz Eduardo Ferreira & da Costa, Carlos A.N. & Carvalho, Pedro Tiago C. & de Araújo, João Medeiros & dos Santos Lucena, Liacir & Corso, Gilberto, 2020. "Robust full-waveform inversion using q-statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    15. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    16. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    18. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    19. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    20. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:86-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.