IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v99y2012icp40-49.html
   My bibliography  Save this article

Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines

Author

Listed:
  • Seljak, Tine
  • Rodman Oprešnik, Samuel
  • Kunaver, Matjaž
  • Katrašnik, Tomaž

Abstract

The paper reports foremost the results of a successful combustion of an innovative lignocellulosic biofuel in a gas turbine. The fuel was processed through liquefaction of lignocellulosic materials with polyhydroxy alcohols in an acid catalyzed reaction. The liquefaction process features: high efficiency, high liquid yields and inexpensive, easily available process equipment. For the purpose of this analysis the following were developed: an experimental gas turbine with internal combustion chamber, a preheated pressurized fuel supply system with swirl-air fuel injector and a heat exchanger to obtain high primary air temperatures. The paper gives results on the emissions of CO, THC, NOx and soot. For the purpose of benchmarking the turbine was also run on diesel fuel. The paper presents analyses of the underlying phenomena with which it aims to provide guidelines for improvements in the fuel processing and in the experimental equipment. It has been shown that direct utilization of this innovative lignocellulosic biofuel gives promising results. Although the CO and THC emissions are higher compared to the benchmark diesel results it has been shown that both emissions decrease with increased turbine inlet temperature and with the increased fuel preheat temperature, due to a very high viscosity of the fuel. It is additionally shown that NOx emissions are low and comparable to those of the diesel fuel, whereas soot emissions are very low for both fuels.

Suggested Citation

  • Seljak, Tine & Rodman Oprešnik, Samuel & Kunaver, Matjaž & Katrašnik, Tomaž, 2012. "Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines," Applied Energy, Elsevier, vol. 99(C), pages 40-49.
  • Handle: RePEc:eee:appene:v:99:y:2012:i:c:p:40-49
    DOI: 10.1016/j.apenergy.2012.04.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912003406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.04.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    2. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    3. Gupta, K.K. & Rehman, A. & Sarviya, R.M., 2010. "Bio-fuels for the gas turbine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2946-2955, December.
    4. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    5. Habib, Zehra & Parthasarathy, Ramkumar & Gollahalli, Subramanyam, 2010. "Performance and emission characteristics of biofuel in a small-scale gas turbine engine," Applied Energy, Elsevier, vol. 87(5), pages 1701-1709, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    2. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    4. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    5. Buffi, Marco & Seljak, Tine & Cappelletti, Alessandro & Bettucci, Lorenzo & Valera-Medina, Agustin & Katrašnik, Tomaž & Chiaramonti, David, 2018. "Performance and emissions of liquefied wood as fuel for a small scale gas turbine," Applied Energy, Elsevier, vol. 230(C), pages 1193-1204.
    6. Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
    7. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    8. Seljak, T. & Katrašnik, T., 2019. "Emission reduction through highly oxygenated viscous biofuels: Use of glycerol in a micro gas turbine," Energy, Elsevier, vol. 169(C), pages 1000-1011.
    9. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    10. Zhang, Hairong & Yang, Huijuan & Guo, Haijun & Huang, Chao & Xiong, Lian & Chen, Xinde, 2014. "Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols," Applied Energy, Elsevier, vol. 113(C), pages 1596-1600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    2. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    3. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    4. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    5. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    6. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    7. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    8. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    9. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    10. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    11. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    12. Deliang Kong & Changbin Yuan & Maojiong Cao & Zihan Wang & Yuanhui Zhang & Zhidan Liu, 2023. "An Ecological Toilet System Incorporated with a Hydrothermal Liquefaction Process," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    13. Sannita, Eugenia & Aliakbarian, Bahar & Casazza, Alessandro A. & Perego, Patrizia & Busca, Guido, 2012. "Medium-temperature conversion of biomass and wastes into liquid products, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6455-6475.
    14. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    16. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    17. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    18. Mei, Danhua & Liu, Shiyun & Wang, Sen & Zhou, Renwu & Zhou, Rusen & Fang, Zhi & Zhang, Xianhui & Cullen, Patrick J. & Ostrikov, Kostya (Ken), 2020. "Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield," Renewable Energy, Elsevier, vol. 157(C), pages 1061-1071.
    19. Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
    20. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:99:y:2012:i:c:p:40-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.