IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1193-1204.html
   My bibliography  Save this article

Performance and emissions of liquefied wood as fuel for a small scale gas turbine

Author

Listed:
  • Buffi, Marco
  • Seljak, Tine
  • Cappelletti, Alessandro
  • Bettucci, Lorenzo
  • Valera-Medina, Agustin
  • Katrašnik, Tomaž
  • Chiaramonti, David

Abstract

This study investigates for the first time the combustion in a micro gas turbine (MGT) of a new bioliquid, a viscous biocrude, which is a liquefied wood (LW) produced via solvolysis of lignocellulosic biomass in acidified glycols. The test rig includes a modified fuel injection line, a re-designed combustion chamber and revised fuel injection positions. The main novelties of this work are: (1) producing of liquefied wood with pure ethylene glycol as a solvent, and methanesulfonic acid as a catalyst, to obtain a bio-crude with lower viscosity and higher lignocellulosics content than previous tested formulations; (2) upgrading raw liquefied wood by blending it with ethanol to further reduce the viscosity of the mixture; (3) utilizing a commercially available MGT Auxiliary Power Unit (APU) of 25 kW electrical power output, with notably reduced extent of adaptations to use the newly obtained fuel mixture. Fuel properties, and their impact on combustion performance using liquefied wood, are investigated by analyzing MGT performance and emissions response at different load and blend ratios. Emissions revealed that the presence of LW in the blends significantly affects CO and NOX concentrations compared to conventional fuels. CO roughly increased from 600 ppm (pure ethanol as fuel) to 1500 ppm (at 20 kW electrical power). The experimental study reveals that it is possible to achieve efficient MGT operation while utilizing high biocrude to ethanol ratios, but a number of adaptations are necessary. The achieved maximum share of liquefied wood in the fuel blend is 47.2% at 25 kW power output. Main barriers to the use of higher share of liquefied wood in these type of systems are also summarized.

Suggested Citation

  • Buffi, Marco & Seljak, Tine & Cappelletti, Alessandro & Bettucci, Lorenzo & Valera-Medina, Agustin & Katrašnik, Tomaž & Chiaramonti, David, 2018. "Performance and emissions of liquefied wood as fuel for a small scale gas turbine," Applied Energy, Elsevier, vol. 230(C), pages 1193-1204.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1193-1204
    DOI: 10.1016/j.apenergy.2018.08.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191831300X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    2. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    3. Rezzoug, Sid-Ahmed & Capart, Richard, 2002. "Liquefaction of wood in two successive steps: solvolysis in ethylene-glycol and catalytic hydrotreatment," Applied Energy, Elsevier, vol. 72(3-4), pages 631-644, July.
    4. Seljak, Tine & Rodman Oprešnik, Samuel & Kunaver, Matjaž & Katrašnik, Tomaž, 2012. "Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines," Applied Energy, Elsevier, vol. 99(C), pages 40-49.
    5. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    6. Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
    7. Van de Beld, Bert & Holle, Elmar & Florijn, Jan, 2013. "The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications," Applied Energy, Elsevier, vol. 102(C), pages 190-197.
    8. Prussi, Matteo & Chiaramonti, David & Recchia, Lucia & Martelli, Francesco & Guidotti, Fabio & Pari, Luigi, 2013. "Alternative feedstock for the biodiesel and energy production: The OVEST project," Energy, Elsevier, vol. 58(C), pages 2-8.
    9. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    10. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    11. Gupta, K.K. & Rehman, A. & Sarviya, R.M., 2010. "Bio-fuels for the gas turbine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2946-2955, December.
    12. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    13. Yang, S.I. & Hsu, T.C. & Wu, M.S., 2016. "Spray combustion characteristics of kerosene/bio-oil part II: Numerical study," Energy, Elsevier, vol. 115(P1), pages 458-467.
    14. Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
    15. Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon & Jeong, Yeon Woo, 2016. "Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner," Renewable Energy, Elsevier, vol. 91(C), pages 516-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    2. Tomasz Suchocki & Paweł Kazimierski & Katarzyna Januszewicz & Piotr Lampart & Bartosz Gawron & Tomasz Białecki, 2024. "Exploring Performance of Pyrolysis-Derived Plastic Oils in Gas Turbine Engines," Energies, MDPI, vol. 17(16), pages 1-12, August.
    3. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    4. Tomasz Suchocki, 2024. "Sustainable Energy Application of Pyrolytic Oils from Plastic Waste in Gas Turbine Engines: Performance, Environmental, and Economic Analysis," Sustainability, MDPI, vol. 16(19), pages 1-19, October.
    5. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    7. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    3. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    4. Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
    5. Seljak, T. & Katrašnik, T., 2019. "Emission reduction through highly oxygenated viscous biofuels: Use of glycerol in a micro gas turbine," Energy, Elsevier, vol. 169(C), pages 1000-1011.
    6. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    7. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    8. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    9. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    11. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    12. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    13. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    15. Chiaramonti, David & Rizzo, Andrea Maria & Spadi, Adriano & Prussi, Matteo & Riccio, Giovanni & Martelli, Francesco, 2013. "Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil," Applied Energy, Elsevier, vol. 101(C), pages 349-356.
    16. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    17. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    18. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    19. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    20. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1193-1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.