IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6373-d1118415.html
   My bibliography  Save this article

An Ecological Toilet System Incorporated with a Hydrothermal Liquefaction Process

Author

Listed:
  • Deliang Kong

    (Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Changbin Yuan

    (Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Maojiong Cao

    (Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Zihan Wang

    (Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Yuanhui Zhang

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Zhidan Liu

    (Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

Abstract

The harmless disposal and resource utilization of human feces is important to the sanitation process. Hydrothermal liquefaction (HTL) can convert toilet feces into bio-crude oil and reduce waste. In this study, an integrated eco-toilet system was developed by combining vacuum micro-flush toilets with a continuous hydrothermal liquefaction reactor. The system operated stably for over 10 h. This system can serve 300 households and save 2759 m 3 of water per year compared to traditional flush toilets. The energy recovery from the feces was 2.87 times the energy consumed for the HTL process. The HTL bio-crude oil yield was 28 wt%, and the higher heat value (HHV) of the bio-crude was 36.1 MJ/kg. The biochemical compounds of the bio-crude oil consisted of acid ester, hydrocarbons, phenols, and a nitrogenous heterocyclic compound. The carbon in the human feces was mainly transferred to the bio-crude oil, while nitrogen was mainly transferred to the aqueous phase product. The post-HTL aqueous stream could be treated and used as fertilizer. This system achieves energy self-sufficiency, along with water and energy savings. This integrated eco-toilet effectively converts feces into bio-crude to realize waste reduction and resource utilization of human feces.

Suggested Citation

  • Deliang Kong & Changbin Yuan & Maojiong Cao & Zihan Wang & Yuanhui Zhang & Zhidan Liu, 2023. "An Ecological Toilet System Incorporated with a Hydrothermal Liquefaction Process," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6373-:d:1118415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    2. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    3. Watson, Jamison & Lu, Jianwen & de Souza, Raquel & Si, Buchun & Zhang, Yuanhui & Liu, Zhidan, 2019. "Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency," Energy, Elsevier, vol. 167(C), pages 189-197.
    4. Thiruvenkadam, Selvakumar & Izhar, Shamsul & Yoshida, Hiroyuki & Danquah, Michael K. & Harun, Razif, 2015. "Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production," Applied Energy, Elsevier, vol. 154(C), pages 815-828.
    5. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    3. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    4. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    5. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    6. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    8. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    9. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    10. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    11. Jiaao Zhu & Yun Guo & Na Chen & Baoming Chen, 2024. "A Review of the Efficient and Thermal Utilization of Biomass Waste," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    12. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    13. Seljak, Tine & Rodman Oprešnik, Samuel & Kunaver, Matjaž & Katrašnik, Tomaž, 2012. "Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines," Applied Energy, Elsevier, vol. 99(C), pages 40-49.
    14. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    15. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    16. Sannita, Eugenia & Aliakbarian, Bahar & Casazza, Alessandro A. & Perego, Patrizia & Busca, Guido, 2012. "Medium-temperature conversion of biomass and wastes into liquid products, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6455-6475.
    17. Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
    18. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    19. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    20. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6373-:d:1118415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.