IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp440-452.html
   My bibliography  Save this article

An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings

Author

Listed:
  • Jiang, Lai
  • Yao, Runming
  • Liu, Kecheng
  • McCrindle, Rachel

Abstract

In the UK, buildings contribute about one third of the energy-related greenhouse gas emissions. Space heating and cooling systems are among the biggest energy consumers in buildings. This research aims to develop a novel Building Energy Management System (BEMS) to reduce the energy consumption of the heating, ventilation and air-conditioning (HVAC) system while fulfilling each occupant’ thermal comfort requirement. This paper presents a newly developed novel method, Epistemic-Deontic-Axiologic (EDA) Agent-based solution to support the Energy Management System meeting the dual targets of occupant thermal comfort and energy efficiency. The multi-agent solutions are applied to the BEMS. The problem decomposition method is used to define the architecture of the system. The Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop the rational local and personal agents inside the system. These EDA-based agents select their optimal action plan by considering the occupants’ thermal sensations, their behavioural adaptations and the energy consumption of the HVAC system. The Newly-developed personal thermal sensation models and group-of-people-based thermal sensation models generated by support vector machine (SVM) based algorithms are applied to evaluate the occupants’ thermal sensations. These models are developed from the data collected in a real built environment. Simulation results prove that the newly-developed BEMS can help the HVAC system reduce the energy consumption by up to 10% while fulfilling the occupants’ thermal comfort requirements.

Suggested Citation

  • Jiang, Lai & Yao, Runming & Liu, Kecheng & McCrindle, Rachel, 2017. "An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings," Applied Energy, Elsevier, vol. 205(C), pages 440-452.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:440-452
    DOI: 10.1016/j.apenergy.2017.07.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    3. Kariminia, Shahab & Shamshirband, Shahaboddin & Motamedi, Shervin & Hashim, Roslan & Roy, Chandrabhushan, 2016. "A systematic extreme learning machine approach to analyze visitors׳ thermal comfort at a public urban space," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 751-760.
    4. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    5. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    6. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    7. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Russo, G., 2023. "A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Ling-Chin, J. & Taylor, W. & Davidson, P. & Reay, D. & Nazi, W.I. & Tassou, S. & Roskilly, A.P., 2019. "UK building thermal performance from industrial and governmental perspectives," Applied Energy, Elsevier, vol. 237(C), pages 270-282.
    4. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    2. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    3. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    7. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    8. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    9. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    11. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    12. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    13. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    14. Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman, 2023. "Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    15. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    16. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    17. Yang, Lei & Nagy, Zoltan & Goffin, Philippe & Schlueter, Arno, 2015. "Reinforcement learning for optimal control of low exergy buildings," Applied Energy, Elsevier, vol. 156(C), pages 577-586.
    18. Barbara Mayer & Michaela Killian & Martin Kozek, 2017. "Hierarchical Model Predictive Control for Sustainable Building Automation," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    19. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    20. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:440-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.