IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v95y2012icp186-195.html
   My bibliography  Save this article

A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk

Author

Listed:
  • Han, Jee-Hoon
  • Ahn, Yu-Chan
  • Lee, In-Beum

Abstract

A large number of research works were undertaken for the planning of sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design under uncertainty. The typical methodologies assessed the performance of the problem under the variability of the uncertain parameters by optimizing the expected value of the objective function. This approach can have large probabilities of the value optimized in unfavorable scenarios. In this paper, we present a mathematical programming model in planning sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design, including financial risk management under uncertainty. The proposed model allows us to determine available technologies to produce electricity and treat CO2 on the purpose of maximizing the expected total profit and minimizing the financial risk of handling uncertain environments (i.e. CO2 mitigation operating costs, carbon credit prices and electricity prices, etc.), while fulfilling electricity demands and CO2 mitigation standards. The multi-objective optimization problem was solved by using the weighted-sum method that imposes a penalty for risk to the objective function. The capability of the proposed modeling framework is illustrated and applied to a real case study based on Korea, for which valuable insights are obtained.

Suggested Citation

  • Han, Jee-Hoon & Ahn, Yu-Chan & Lee, In-Beum, 2012. "A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk," Applied Energy, Elsevier, vol. 95(C), pages 186-195.
  • Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:186-195
    DOI: 10.1016/j.apenergy.2012.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudia Kemfert & Wietze Lise & Richard Tol, 2004. "Games of Climate Change with International Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 209-232, June.
    2. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    3. Copeland, Brian R. & Taylor, M. Scott, 2005. "Free trade and global warming: a trade theory view of the Kyoto protocol," Journal of Environmental Economics and Management, Elsevier, vol. 49(2), pages 205-234, March.
    4. Carraro, Carlo & Siniscalco, Domenico, 1993. "Strategies for the international protection of the environment," Journal of Public Economics, Elsevier, vol. 52(3), pages 309-328, October.
    5. Han, Jee-Hoon & Lee, In-Beum, 2011. "Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission," Applied Energy, Elsevier, vol. 88(12), pages 5056-5068.
    6. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Kraslawski, Andrzej & Irabien, Angel, 2013. "Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices," Energy, Elsevier, vol. 54(C), pages 343-351.
    2. Wang, Bangjun & Ji, Feng & Zheng, Jie & Xie, Kejia & Feng, Zhaolei, 2021. "Carbon emission reduction of coal-fired power supply chain enterprises under the revenue sharing contract: Perspective of coordination game," Energy Economics, Elsevier, vol. 102(C).
    3. Rode, David C. & Fischbeck, Paul S., 2018. "Reduced-form models for power market risk analysis," Applied Energy, Elsevier, vol. 228(C), pages 1640-1655.
    4. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2017. "Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 257-267.
    5. Raja Jayaraman & Danilo Liuzzi & Cinzia Colapinto & Tufail Malik, 2017. "A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates," Annals of Operations Research, Springer, vol. 251(1), pages 255-270, April.
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
    7. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    8. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    9. Srikant Gupta & Armin Fügenschuh & Irfan Ali, 2018. "A Multi-Criteria Goal Programming Model to Analyze the Sustainable Goals of India," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    10. Häntsch, Marius & Huchzermeier, Arnd, 2016. "Transparency of risk for global and complex network decisions in the automotive industry," International Journal of Production Economics, Elsevier, vol. 175(C), pages 81-95.
    11. Ahn, Yu-Chan & Lee, In-Beum & Lee, Kun-Hong & Han, Jee-Hoon, 2015. "Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model," Applied Energy, Elsevier, vol. 154(C), pages 528-542.
    12. Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
    13. Lee, Suh-Young & Lee, In-Beum & Han, Jeehoon, 2019. "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, Elsevier, vol. 238(C), pages 34-44.
    14. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    15. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    16. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    17. Jayaraman, Raja & Colapinto, Cinzia & La Torre, Davide & Malik, Tufail, 2017. "A Weighted Goal Programming model for planning sustainable development applied to Gulf Cooperation Council Countries," Applied Energy, Elsevier, vol. 185(P2), pages 1931-1939.
    18. Zhang, Xiaodong & Duncan, Ian J. & Huang, Gordon & Li, Gongchen, 2014. "Identification of management strategies for CO2 capture and sequestration under uncertainty through inexact modeling," Applied Energy, Elsevier, vol. 113(C), pages 310-317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    2. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    3. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    4. Kimiko Terai, 2008. "International Coordination and Domestic Politics," Working Papers 080907, University of California-Irvine, Department of Economics.
    5. Thomas Eichner & Rüdiger Pethig, 2014. "Self-Enforcing Environmental Agreements, Trade, and Demand- and Supply-Side Mitigation Policy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(3), pages 419-450.
    6. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    7. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    8. Lassi Ahlvik & Yulia Pavlova, 2013. "A Strategic Analysis of Eutrophication Abatement in the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 353-378, November.
    9. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    10. Thomas Eichner & Rüdiger Pethig, 2013. "Trade tariffs and self-enforcing environmental agreements," Volkswirtschaftliche Diskussionsbeiträge 161-13, Universität Siegen, Fakultät Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht.
    11. Eichner, Thomas & Pethig, Rüdiger, 2015. "Unilateral consumption-based carbon taxes and negative leakage," Resource and Energy Economics, Elsevier, vol. 40(C), pages 127-142.
    12. repec:dau:papers:123456789/4069 is not listed on IDEAS
    13. Geoffroy Dolphin & Michael G. Pollitt, 2018. "International spillovers and carbon pricing Policies," Working Papers EPRG 1802, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Schwerhoff, Gregor & Edenhofer, Ottmar, 2013. "Low-Carbon Development through International Specialization," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80036, Verein für Socialpolitik / German Economic Association.
    15. Eskander, Shaikh & Fankhauser, Samuel, 2021. "The impact of climate legislation on trade-related carbon emissions, 1997–2017," LSE Research Online Documents on Economics 111509, London School of Economics and Political Science, LSE Library.
    16. Heugues, Mélanie, 2013. "The Global Emission Game: On the Impact of Strategic Interactions Between Countries on the Existence and the Properties of Nash Equilibria," Climate Change and Sustainable Development 162563, Fondazione Eni Enrico Mattei (FEEM).
    17. Richard S.J. Tol, 2013. "Long live the Kyoto Protocol!," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 14, pages 344-351, Edward Elgar Publishing.
    18. Xiao Chen & Alan Woodland, 2013. "International trade and climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(3), pages 381-413, June.
    19. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    20. Tsai, Ming-Tang & Yen, Chih-Wei, 2011. "The influence of carbon dioxide trading scheme on economic dispatch of generators," Applied Energy, Elsevier, vol. 88(12), pages 4811-4816.
    21. Basak Bayramoglu & Jean-François Jacques, 2015. "International Environmental Agreements: The Case of Costly Monetary Transfers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(4), pages 745-767, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:186-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.