IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1640-1655.html
   My bibliography  Save this article

Reduced-form models for power market risk analysis

Author

Listed:
  • Rode, David C.
  • Fischbeck, Paul S.

Abstract

The experience of the last fifteen years has illustrated dramatically the emergence of new risks facing power market investors. The volatility of commodity prices, the strategic behavior of competing firms, and regulatory uncertainty all contribute to a challenging investment and operating environment. Traditionally, utilities and power-market investors have used large-scale optimizing production-cost models to analyze the cash flows of power generators. The complexity of these models, particularly when applied on a regional or national scale, is such that computational costs often prohibit extensive analysis of commodity, regulatory, and structural risks. This article demonstrates how a reduced-form modeling approach utilizing neural networks can be used to increase greatly the ability of modelers to use modern simulation-based risk analysis techniques. In particular, several applications relevant to evaluating the cash flow risks of generators, with applications to hedging, are presented. Central to the contributions of this paper is our reduction of complex optimizing models to spreadsheet form, reducing not only their computational complexity, but also their practical user complexity.

Suggested Citation

  • Rode, David C. & Fischbeck, Paul S., 2018. "Reduced-form models for power market risk analysis," Applied Energy, Elsevier, vol. 228(C), pages 1640-1655.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1640-1655
    DOI: 10.1016/j.apenergy.2018.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    2. Han, Jee-Hoon & Ahn, Yu-Chan & Lee, In-Beum, 2012. "A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk," Applied Energy, Elsevier, vol. 95(C), pages 186-195.
    3. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    4. Shafie-khah, Miadreza & Parsa Moghaddam, Mohsen & Sheikh-El-Eslami, Mohamad Kazem, 2013. "Development of a virtual power market model to investigate strategic and collusive behavior of market players," Energy Policy, Elsevier, vol. 61(C), pages 717-728.
    5. Emmanuel Dechenaux & Dan Kovenock, 2007. "Tacit collusion and capacity withholding in repeated uniform price auctions," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1044-1069, December.
    6. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    7. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    8. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    9. Ahmed, Sajjad & Elsholkami, Mohamed & Elkamel, Ali & Du, Juan & Ydstie, Erik B. & Douglas, Peter L., 2014. "Financial risk management for new technology integration in energy planning under uncertainty," Applied Energy, Elsevier, vol. 128(C), pages 75-81.
    10. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    11. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    12. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    13. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    14. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    15. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    16. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    17. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    18. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    19. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    20. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    21. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    22. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    3. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
    5. Wierzbowski, Michal & Filipiak, Izabela & Lyzwa, Wojciech, 2017. "Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 51-70.
    6. Ji, Ling & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao & Song, Yi-Hang, 2017. "Explicit cost-risk tradeoff for renewable portfolio standard constrained regional power system expansion: A case study of Guangdong Province, China," Energy, Elsevier, vol. 131(C), pages 125-136.
    7. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    8. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    9. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    10. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    11. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    12. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
    13. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    14. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    15. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    16. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    17. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    18. Abdin, Islam F. & Zio, Enrico, 2018. "An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production," Applied Energy, Elsevier, vol. 222(C), pages 898-914.
    19. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    20. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1640-1655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.