IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp371-382.html
   My bibliography  Save this article

A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia

Author

Listed:
  • Saleheen, Mohammed Zeehan
  • Salema, Arshad Adam
  • Mominul Islam, Shah Mohammad
  • Sarimuthu, Charles R.
  • Hasan, Md Zobaer

Abstract

This paper presents a detailed target-oriented performance assessment of a 232.5 kWp grid-connected solar PV (GCPV) system installed on a commercial building in Malaysia. Technical and meteorological data for 2019, in 5-min intervals, was retrieved from the solar data logger. The GCPV system generated about 301.5 MWh of energy in 2019, almost achieving the stated target of 305.0 MWh. While most months in 2019 successfully achieved the set monthly target, some did not due to low solar irradiance. The Performance Ratio (PR), Capacity Utilization Factor (CUF), system efficiency, and Levelized Cost of Energy (LCOE) were found to be 85.4%, 14.85%, 9.15%, and 0.396 MYR/kWh, respectively. The PR of the present GCPV system was higher than other GCPV systems surveyed. Approximately 177 metric tons of CO2 emissions were saved during the year after installing the GCPV system. In addition, performance models, based on the key factors of solar irradiation and PV module temperature that affect the yield and power output of the GCPV system, were developed and tested statistically. The findings of this study should be of use to solar energy customers and stakeholders.

Suggested Citation

  • Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:371-382
    DOI: 10.1016/j.renene.2021.02.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    2. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    3. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    4. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    5. Sahouane, Nordine & Dabou, Rachid & Ziane, Abderrezzaq & Neçaibia, Ammar & Bouraiou, Ahmed & Rouabhia, Abdelkrim & Mohammed, Blal, 2019. "Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara," Renewable Energy, Elsevier, vol. 143(C), pages 1318-1330.
    6. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    7. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    8. Mpholo, Moeketsi & Nchaba, Teboho & Monese, Molebatsi, 2015. "Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho," Renewable Energy, Elsevier, vol. 81(C), pages 845-852.
    9. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    10. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    11. Adam, Aminu Dankaka & Apaydin, Gokhan, 2016. "Grid connected solar photovoltaic system as a tool for green house gas emission reduction in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1086-1091.
    12. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    13. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    14. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    15. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    16. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    17. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    18. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    19. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    20. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    21. Khalid, Ahmad Mohd & Mitra, Indradip & Warmuth, Werner & Schacht, Volker, 2016. "Performance ratio – Crucial parameter for grid connected PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1139-1158.
    22. Roumpakias, Elias & Stamatelos, Anastassios, 2019. "Performance analysis of a grid-connected photovoltaic park after 6 years of operation," Renewable Energy, Elsevier, vol. 141(C), pages 368-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mominul Islam, Shah Mohammad & Salema, Arshad Adam & Saleheen, Mohammed Zeehan & Lim, Joanne Mun Yee, 2022. "The influence of shifting the electric bus charging routine on the techno-economic performance of a solar-powered bus depot," Energy, Elsevier, vol. 239(PD).
    2. Ghoname Abdullah & Hidekazu Nishimura, 2021. "Techno-Economic Performance Analysis of a 40.1 kWp Grid-Connected Photovoltaic (GCPV) System after Eight Years of Energy Generation: A Case Study for Tochigi, Japan," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    3. Amor Fezzani & Mawloud Guermoui & Abdellah Kouzou & Ahmed Hafaifa & Layachi Zaghba & Said Drid & Jose Rodriguez & Mohamed Abdelrahem, 2023. "Performances Analysis of Three Grid-Tied Large-Scale Solar PV Plants in Varied Climatic Conditions: A Case Study in Algeria," Sustainability, MDPI, vol. 15(19), pages 1-23, September.
    4. Koerner, Sonja Angelika & Siew, Wei Sian & Salema, Arshad Adam & Balan, Poovarasi & Mekhilef, Saad & Thavamoney, Nisha, 2022. "Energy policies shaping the solar photovoltaics business models in Malaysia with some insights on Covid-19 pandemic effect," Energy Policy, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    2. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    3. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    4. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    8. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    9. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    10. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    11. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    12. Ali, Hayder & Khan, Hassan Abbas, 2020. "Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film based PV rooftop systems in Pakistan," Renewable Energy, Elsevier, vol. 152(C), pages 347-357.
    13. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    14. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    15. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    16. Nuri Caglayan, 2023. "The Technical and Economic Assessment of a Solar Rooftop Grid-Connected Photovoltaic System for a Dairy Farm," Energies, MDPI, vol. 16(20), pages 1-20, October.
    17. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.
    18. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    19. Humberto Vidal & Marco Rivera & Patrick Wheeler & Nicolás Vicencio, 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    20. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:371-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.