A model-based approach for optical performance assessment and optimization of a solar dish
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.05.076
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- García-Cortés, Silverio & Bello-García, Antonio & Ordóñez, Celestino, 2012. "Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment," Applied Energy, Elsevier, vol. 92(C), pages 815-821.
- Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
- Xiao, Jun & Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Wu, Hongsheng, 2012. "A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2539-2544.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bianchini, Augusto & Guzzini, Alessandro & Pellegrini, Marco & Saccani, Cesare, 2019. "Performance assessment of a solar parabolic dish for domestic use based on experimental measurements," Renewable Energy, Elsevier, vol. 133(C), pages 382-392.
- Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
- Zhou-Qiao Dai & Xu Ma & Xin-Yuan Tang & Ren-Zhong Zhang & Wei-Wei Yang, 2023. "Solar-Thermal-Chemical Integrated Design of a Cavity-Type Solar-Driven Methane Dry Reforming Reactor," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Mendoza Castellanos, Luis Sebastián & Galindo Noguera, Ana Lisbeth & Carrillo Caballero, Gaylord Enrique & De Souza, André Leandro & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Ventur, 2019. "Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid," Renewable Energy, Elsevier, vol. 135(C), pages 259-265.
- Salamanca, Santiago & Merchán, Pilar & Adán, Antonio & Pérez, Emiliano, 2019. "An appraisal of the geometry and energy efficiency of parabolic trough collectors with laser scanners and image processing," Renewable Energy, Elsevier, vol. 134(C), pages 64-77.
- Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.
- Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
- Arancibia-Bulnes, Camilo A. & Peña-Cruz, Manuel I. & Mutuberría, Amaia & Díaz-Uribe, Rufino & Sánchez-González, Marcelino, 2017. "A survey of methods for the evaluation of reflective solar concentrator optics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 673-684.
- Salamanca, Santiago & Merchán, Pilar & Adán, Antonio & Pérez, Emiliano, 2019. "An appraisal of the geometry and energy efficiency of parabolic trough collectors with laser scanners and image processing," Renewable Energy, Elsevier, vol. 134(C), pages 64-77.
- Gabriele Guidi & Umair Shafqat Malik & Andrea Manes & Stefano Cardamone & Massimo Fossati & Carla Lazzari & Claudio Volpato & Marco Giglio, 2020. "Laser Scanner-Based 3D Digitization for the Reflective Shape Measurement of a Parabolic Trough Collector," Energies, MDPI, vol. 13(21), pages 1-21, October.
- Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
- Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
- Xu, Chengmu & Chen, Zhiping & Li, Ming & Zhang, Peng & Ji, Xu & Luo, Xi & Liu, Jiangtao, 2014. "Research on the compensation of the end loss effect for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 115(C), pages 128-139.
- Yu, Yupu & Bai, Fengwu & Wang, Zhifeng, 2023. "Numerical and experimental investigation on thermal performances of quartz tube gravity-driven solid particle solar receiver based on linear-focused solar furnace," Renewable Energy, Elsevier, vol. 203(C), pages 881-897.
- Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
- Ren, Lanxu & Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Xu, Wenbin & Shen, Zhenfeng, 2014. "A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 76-83.
- Akbarzadeh, Alireza & Ahmadlouydarab, Majid & Niaei, Aligholi, 2021. "Capabilities of α-Al2O3, γ-Al2O3, and bentonite dry powders used in flat plate solar collector for thermal energy storage," Renewable Energy, Elsevier, vol. 173(C), pages 704-720.
- Muhammad M. Rafique & Shafiqur Rehman & Luai M. Alhems, 2023. "Recent Advancements in High-Temperature Solar Particle Receivers for Industrial Decarbonization," Sustainability, MDPI, vol. 16(1), pages 1-32, December.
- Xie, Xiangyu & Xu, Haoran & Gan, Di & Ni, Mingjiang & Yan, Jianhua & Cen, Kefa & Xiao, Gang, 2022. "A sliding-bed particle solar receiver with controlling particle flow velocity for high-temperature thermal power generation," Renewable Energy, Elsevier, vol. 183(C), pages 41-50.
- Peter King & Christopher Sansom & Paul Comley, 2019. "Photogrammetry for Concentrating Solar Collector Form Measurement, Validated Using a Coordinate Measuring Machine," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
- El Ydrissi, Massaab & Ghennioui, Hicham & Bennouna, El Ghali & Farid, Abdi, 2020. "Techno-economic study of the impact of mirror slope errors on the overall optical and thermal efficiencies- case study: Solar parabolic trough concentrator evaluation under semi-arid climate," Renewable Energy, Elsevier, vol. 161(C), pages 293-308.
- Silva, R. & Pérez, M. & Fernández-Garcia, A., 2013. "Modeling and co-simulation of a parabolic trough solar plant for industrial process heat," Applied Energy, Elsevier, vol. 106(C), pages 287-300.
- Bonanos, A.M. & Faka, M. & Abate, D. & Hermon, S. & Blanco, M.J., 2019. "Heliostat surface shape characterization for accurate flux prediction," Renewable Energy, Elsevier, vol. 142(C), pages 30-40.
- Yu, Yupu & Hu, Feng & Bai, Fengwu & Wang, Zhifeng, 2022. "On-sun testing of a 1 MWth quartz tube bundle solid particle solar receiver," Renewable Energy, Elsevier, vol. 193(C), pages 383-397.
- Gallo, Alessandro & Marzo, Aitor & Fuentealba, Edward & Alonso, Elisa, 2017. "High flux solar simulators for concentrated solar thermal research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1385-1402.
- Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
More about this item
Keywords
Solar dish; Laser 3D scanning; Photogrammetry; Monte-Carlo ray-tracing; Flux density distribution; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:100:y:2017:i:c:p:103-113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.