IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i2p436-441.html
   My bibliography  Save this article

The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates

Author

Listed:
  • Liu, Yong
  • Wang, Hai
  • Shen, Hui
  • Chen, Wei

Abstract

Here we report a 3-dimensional dye-sensitized solar cell (3D-DSSCs) and module simulating the fractal structure of the pine tree for capturing sunlight. Compared to traditional flat solar cells, this type of solar cell exhibits superiority of absorbing sunlight from all directions. The fabricated 3D-DSSC and module have achieved 3.36% and 3.19% efficiencies, respectively. The results show that the shade has little effect on the performance of 3D-DSSC and module. It is expected that this 3D-DSSC and module have strong potential for practical application due to their 3D light utilization.

Suggested Citation

  • Liu, Yong & Wang, Hai & Shen, Hui & Chen, Wei, 2010. "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, Elsevier, vol. 87(2), pages 436-441, February.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:2:p:436-441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00372-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Green, M. A., 2000. "Photovoltaics: technology overview," Energy Policy, Elsevier, vol. 28(14), pages 989-998, November.
    2. Mercaldo, Lucia Vittoria & Addonizio, Maria Luisa & Noce, Marco Della & Veneri, Paola Delli & Scognamiglio, Alessandra & Privato, Carlo, 2009. "Thin film silicon photovoltaics: Architectural perspectives and technological issues," Applied Energy, Elsevier, vol. 86(10), pages 1836-1844, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, H.Y. & Wang, H. Paul, 2012. "Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes," Applied Energy, Elsevier, vol. 100(C), pages 144-147.
    2. Wu, Chun-Te & Kuo, Hsiu-Po & Tsai, Hung-An & Pan, Wen-Chueh, 2012. "Rapid dye-sensitized solar cell working electrode preparation using far infrared rapid thermal annealing," Applied Energy, Elsevier, vol. 100(C), pages 138-143.
    3. Chen, Ze & Zhang, Xiao-dan & Fang, Jia & Liang, Jun-hui & Liang, Xue-jiao & Sun, Jian & Zhang, De-kun & Wang, Ning & Zhao, Hui-xu & Chen, Xin-liang & Huang, Qian & Wei, Chang-chun & Zhao, Ying, 2014. "Enhancement in electrical performance of thin-film silicon solar cells based on a micro- and nano-textured zinc oxide electrodes," Applied Energy, Elsevier, vol. 135(C), pages 158-164.
    4. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    5. Chou, Chuen-Shii & Guo, Ming-Geng & Liu, Kuan-Hung & Chen, Yi-Siang, 2012. "Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell," Applied Energy, Elsevier, vol. 92(C), pages 224-233.
    6. Wang, Xiaoyue & Li, Haibo & Liu, Yong & Zhao, Wenxia & Liang, Chaolun & Huang, Hong & Mo, Delin & Liu, Zhong & Yu, Xiao & Deng, Youjun & Shen, Hui, 2012. "Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells," Applied Energy, Elsevier, vol. 99(C), pages 198-205.
    7. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    8. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    2. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    3. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    4. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    5. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    6. Cerón, Isabel & Caamaño-Martín, E. & Neila, F. Javier, 2013. "‘State-of-the-art’ of building integrated photovoltaic products," Renewable Energy, Elsevier, vol. 58(C), pages 127-133.
    7. Poullikkas, Andreas, 2007. "Implementation of distributed generation technologies in isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 30-56, January.
    8. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    9. Huh, Daihong & Choi, Hak-Jong & Byun, Minseop & Kim, Kwan & Lee, Heon, 2019. "Long-term analysis of PV module with large-area patterned anti-reflective film," Renewable Energy, Elsevier, vol. 135(C), pages 525-528.
    10. Alessandra Scognamiglio, 2021. "A Trans-Disciplinary Vocabulary for Assessing the Visual Performance of BIPV," Sustainability, MDPI, vol. 13(10), pages 1-38, May.
    11. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    12. Van Limbergen, T. & Bonné, R. & Hustings, J. & Valcke, R. & Thijs, S. & Vangronsveld, J. & Manca, J.V., 2022. "Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Jackson, Tim & Oliver, Mark, 2000. "The viability of solar photovoltaics," Energy Policy, Elsevier, vol. 28(14), pages 983-988, November.
    14. Piliougine, Michel & Sánchez-Friera, Paula & Petrone, Giovanni & Sánchez-Pacheco, Francisco José & Spagnuolo, Giovanni & Sidrach-de-Cardona, Mariano, 2022. "New model to study the outdoor degradation of thin–film photovoltaic modules," Renewable Energy, Elsevier, vol. 193(C), pages 857-869.
    15. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    16. Zhang, Wei & White, Steven, 2016. "Overcoming the liability of newness: Entrepreneurial action and the emergence of China's private solar photovoltaic firms," Research Policy, Elsevier, vol. 45(3), pages 604-617.
    17. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    18. Cavallaro, Fausto, 2010. "A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method," Energy Policy, Elsevier, vol. 38(1), pages 463-474, January.
    19. Nils ROLOFF & Ulrike LEHR & Wolfram KREWITT & Gerhard FUCHS & Sandra WASSERMANN & Wolfganf WEIMER-JEHLE & Bernd SCHMIDT, 2008. "Success Determinants for Technological Innovations in the Energy Sector - The Case of Photovoltaics," EcoMod2008 23800118, EcoMod.
    20. Focacci, Antonio, 2009. "Residential plants investment appraisal subsequent to the new supporting photovoltaic economic mechanism in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2710-2715, December.

    More about this item

    Keywords

    Dye-sensitized solar cell TiO2 Solar module Electrolyte;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:2:p:436-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.