IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i9p2818-2825.html
   My bibliography  Save this article

Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong

Author

Listed:
  • Li, Hong
  • Yang, Hongxing

Abstract

This paper reports the investigation results on application of the solar assisted air source heat pump systems for hot water production in Hong Kong. A mathematical model of the system is developed to predict its operating performance under specified weather conditions. The optimum flow rate from the load water tank to the condenser is proposed considering both the appropriate outlet water temperature and system performance. The effect of various parameters, including circulation flow rate, solar collector area, tilt angle of solar collector array and initial water temperature in the preheating solar tank is investigated, and the results show that the system performance is governed strongly by the change of circulation flow rate, solar collector area and initial water temperature in the preheating solar tank.

Suggested Citation

  • Li, Hong & Yang, Hongxing, 2010. "Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2818-2825, September.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2818-2825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00261-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tilak Abeysinghe & Jiaying Gu, 2008. "Lifetime Income and Housing Affordability in Singapore," Microeconomics Working Papers 22558, East Asian Bureau of Economic Research.
    2. Li, Hong & Yang, Hongxing, 2009. "Potential application of solar thermal systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 86(2), pages 175-180, February.
    3. Tilak Abeysinghe & Jiaying Gu, 2011. "Lifetime Income and Housing Affordability in Singapore," Urban Studies, Urban Studies Journal Limited, vol. 48(9), pages 1875-1891, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    2. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    3. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    4. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2014. "A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems," Applied Energy, Elsevier, vol. 114(C), pages 124-134.
    5. Pitarch, Miquel & Navarro-Peris, Emilio & Gonzálvez-Maciá, José & Corberán, José M., 2017. "Evaluation of different heat pump systems for sanitary hot water production using natural refrigerants," Applied Energy, Elsevier, vol. 190(C), pages 911-919.
    6. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    7. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.
    8. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    9. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    10. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    13. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    14. Jin, Xin & Wu, Fengping & Xu, Tao & Huang, Gongsheng & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng & Lai, Alvin CK., 2021. "Experimental investigation of the novel melting point modified Phase–Change material for heat pump latent heat thermal energy storage application," Energy, Elsevier, vol. 216(C).
    15. Yilmaz, Saban & Binici, Hanifi & Ozcalik, Hasan Riza, 2016. "Energy supply in a green school via a photovoltaic-thermal power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 713-720.
    16. Chao Huan & Shengteng Li & Fenghao Wang & Lang Liu & Yujiao Zhao & Zhihua Wang & Pengfei Tao, 2019. "Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi’an, China," Energies, MDPI, vol. 12(13), pages 1-20, June.
    17. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    18. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    19. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    20. Chinnasamy, Subramaniyan & Arunachalam, Amarkarthik, 2023. "Experimental investigation on direct expansion solar-air source heat pump for water heating application," Renewable Energy, Elsevier, vol. 202(C), pages 222-233.
    21. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    22. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    23. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Tze-Chin & Kao, Jehng-Jung & Wong, Chih-Po, 2012. "Effective solar radiation based benefit and cost analyses for solar water heater development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1874-1882.
    2. Arabkoohsar, A. & Farzaneh-Gord, M. & Deymi-Dashtebayaz, M. & Machado, L. & Koury, R.N.N., 2015. "A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set," Renewable Energy, Elsevier, vol. 81(C), pages 239-250.
    3. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    4. Diego-Ayala, U. & Carrillo, J.G., 2016. "Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico," Renewable Energy, Elsevier, vol. 96(PA), pages 756-764.
    5. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    6. Tilak Abeysinghe, 2019. "Old-age dependency: is it really increasing in aging populations?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(13), pages 1111-1117, July.
    7. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    8. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    9. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    10. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    11. Suárez, I. & Prieto, M.M. & Fernández, F.J., 2013. "Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines," Applied Energy, Elsevier, vol. 104(C), pages 128-136.
    12. Weeratunge, Hansani & Narsilio, Guillermo & de Hoog, Julian & Dunstall, Simon & Halgamuge, Saman, 2018. "Model predictive control for a solar assisted ground source heat pump system," Energy, Elsevier, vol. 152(C), pages 974-984.
    13. Panagiotidou, Maria & Aye, Lu & Rismanchi, Behzad, 2020. "Solar driven water heating systems for medium-rise residential buildings in urban mediterranean areas," Renewable Energy, Elsevier, vol. 147(P1), pages 556-569.
    14. Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
    15. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    16. Weeratunge, Hansani & Aditya, Gregorius Riyan & Dunstall, Simon & de Hoog, Julian & Narsilio, Guillermo & Halgamuge, Saman, 2021. "Feasibility and performance analysis of hybrid ground source heat pump systems in fourteen cities," Energy, Elsevier, vol. 234(C).
    17. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2014. "A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems," Applied Energy, Elsevier, vol. 114(C), pages 124-134.
    18. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Ding, Yongxia & Niu, Yunzhu & Christensen, Thomas H., 2011. "Household energy use and emission reduction effects of energy conversion in Lanzhou city, China," Renewable Energy, Elsevier, vol. 36(5), pages 1431-1436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2818-2825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.