IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i2p643-649.html
   My bibliography  Save this article

Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong

Author

Listed:
  • Chow, T.T.
  • Pei, G.
  • Fong, K.F.
  • Lin, Z.
  • Chan, A.L.S.
  • He, M.

Abstract

Direct hot water production consumes about 4% of the total energy use in Hong Kong, and about 20% when considering only the domestic sector. For water heating the energy sources are mostly town gas, liquefied petroleum gas and electricity. The use of heat pump or solar water heating, particularly the solar-assisted heat pump options, is not popular. In this paper, the potential application of a unitary type direct-expansion solar-assisted heat pump (DX-SAHP) system was examined. A numerical model of the DX-SAHP system was first introduced. From the simulation results with the use of the Typical Meteorological Year (TMY) weather data of Hong Kong, the system was found achieving a year-average coefficient of performance (COP) of 6.46, which is much better than the conventional heat pump system performance. The potential use of DX-SAHP therefore deserves further evaluation.

Suggested Citation

  • Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:2:p:643-649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00233-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T. T. & Chan, A. L. S., 2004. "Numerical study of desirable solar-collector orientations for the coastal region of South China," Applied Energy, Elsevier, vol. 79(3), pages 249-260, November.
    2. Li, Hong & Yang, Hongxing, 2009. "Potential application of solar thermal systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 86(2), pages 175-180, February.
    3. Ji, Jie & Liu, Keliang & Chow, Tin-tai & Pei, Gang & He, Wei & He, Hanfeng, 2008. "Performance analysis of a photovoltaic heat pump," Applied Energy, Elsevier, vol. 85(8), pages 680-693, August.
    4. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    2. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    4. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    5. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    6. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    7. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    8. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    9. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    10. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    11. Pan, Tze-Chin & Kao, Jehng-Jung & Wong, Chih-Po, 2012. "Effective solar radiation based benefit and cost analyses for solar water heater development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1874-1882.
    12. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    15. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    16. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    17. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    18. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    19. Krzysztof Tomczuk & Paweł Obstawski, 2024. "Analysis of the Cooperation of a Compressor Heat Pump with a PV System," Sustainability, MDPI, vol. 16(9), pages 1-29, April.
    20. Kong, Xiangqiang & Jiang, Kailin & Dong, Shandong & Li, Ying & Li, Jianbo, 2018. "Control strategy and experimental analysis of a direct-expansion solar-assisted heat pump water heater with R134a," Energy, Elsevier, vol. 145(C), pages 17-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:2:p:643-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.