IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2515-d244347.html
   My bibliography  Save this article

Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi’an, China

Author

Listed:
  • Chao Huan

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Shengteng Li

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Fenghao Wang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lang Liu

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Yujiao Zhao

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Zhihua Wang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Pengfei Tao

    (Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710021, China)

Abstract

This study proposed a combined solar-assisted heat pump (SAHP) system that could operate in the serial mode or parallel mode. For this proposed system, a stable year-round operation could be achieved without the assistance of electric heating or low-temperature heat pump. By analyzing the heat balance equations, a correlation of the combined SAHP system for the two modes switched was obtained, which provided a theoretical basis for the optimal operation of this system. In addition, the performance of the proposed system applied in a university bathroom in Xi’an district was investigated using TRNSYS. The results illustrated that compared to the serial and parallel systems, the proposed system exhibited a good performance on energy efficiency. The annual average coefficient of performance (COP) of the proposed system was 5.7, obviously higher than those of the serial system and the parallel system, which were 3.3 and 4.3, respectively. Therefore, the results in this study could provide the theoretical guidance and reference for practical engineering design.

Suggested Citation

  • Chao Huan & Shengteng Li & Fenghao Wang & Lang Liu & Yujiao Zhao & Zhihua Wang & Pengfei Tao, 2019. "Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi’an, China," Energies, MDPI, vol. 12(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2515-:d:244347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    2. Zhongchao Zhao & Yanrui Zhang & Haojun Mi & Yimeng Zhou & Yong Zhang, 2018. "Experimental Research of a Water-Source Heat Pump Water Heater System," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Li, Hong & Yang, Hongxing, 2010. "Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2818-2825, September.
    4. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    5. Huang, B.J & Lee, C.P, 2004. "Long-term performance of solar-assisted heat pump water heater," Renewable Energy, Elsevier, vol. 29(4), pages 633-639.
    6. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    7. Banister, Carsen J. & Collins, Michael R., 2015. "Development and performance of a dual tank solar-assisted heat pump system," Applied Energy, Elsevier, vol. 149(C), pages 125-132.
    8. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    9. Moreno-Rodríguez, A. & González-Gil, A. & Izquierdo, M. & Garcia-Hernando, N., 2012. "Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications," Energy, Elsevier, vol. 45(1), pages 704-715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Chengxiang & Zhang, Guochen & Mu, Gang & Guo, Hongmin & Yuan, Tong & Zhao, Cheng & Li, Xiuchen & Zhang, Qian, 2024. "Solar-heat pump combined drying with phase change heat storage: Multi-energy self-adaptive control," Renewable Energy, Elsevier, vol. 230(C).
    2. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    3. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Xin Meng & Xin Zhou & Zhenyu Li, 2024. "Review of the Coupled System of Solar and Air Source Heat Pump," Energies, MDPI, vol. 17(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    3. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    4. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    5. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    7. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    8. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    9. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
    10. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2017. "Techno-economic assessment of solar assisted heat pump system retrofit in the Canadian housing stock," Applied Energy, Elsevier, vol. 190(C), pages 439-452.
    11. Shucai Bai & Fangyi Li & Wu Xie, 2022. "Green but Unpopular? Analysis on Purchase Intention of Heat Pump Water Heaters in China," Energies, MDPI, vol. 15(7), pages 1-19, March.
    12. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    13. Wu, Wei & Wang, Xiaoyu & Xia, Man & Dou, Yiping & Yin, Zhengyu & Wang, Jun & Lu, Ping, 2020. "A novel composite PCM for seasonal thermal energy storage of solar water heating system," Renewable Energy, Elsevier, vol. 161(C), pages 457-469.
    14. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    15. Hélio A. G. Diniz & Tiago F. Paulino & Juan J. G. Pabon & Antônio A. T. Maia & Raphael N. Oliveira, 2021. "Dynamic Model of a Transcritical CO 2 Heat Pump for Residential Water Heating," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    16. Mohammad Emamjome Kashan & Alan S. Fung & John Swift, 2021. "Integrating Novel Microchannel-Based Solar Collectors with a Water-to-Water Heat Pump for Cold-Climate Domestic Hot Water Supply, Including Related Solar Systems Comparisons," Energies, MDPI, vol. 14(13), pages 1-31, July.
    17. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    18. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    19. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    20. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2515-:d:244347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.