IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1087-1104.html
   My bibliography  Save this article

Development of the regulation mapping of 1Â MW internal combustion engine for diagnostic scopes

Author

Listed:
  • Barelli, L.
  • Bidini, G.
  • Bonucci, F.

Abstract

The present work deals with the creation, on the basis of experimental data, of the regulation maps for the 1Â MW cogenerative internal combustion engine (ICE) installed at the Engineering Faculty of Perugia University. The regulation logic mapping is necessary for the development of a thermodynamic model of the engine behaviour to simulate the effects of possible malfunctions occurrence, such as deterioration or fouling not directly experienced on the engine. Such a work is carried out as a part of a more general research activity concerning the development of a diagnosis system for the cogenerative plant. Therefore, a first phase of the present work relates to the experimental data gathering campaign and the consequent data analysis to individuate the characteristic parameters of regulation. In the second phase, instead, a neural simulator of the control logic was developed on the basis of the experimental data for the engine operation at full load (initially considered at 980Â kW) and during transitory. Consequently, through such a simulator the regulation maps of the engine were determined considering the variation range of all the characteristic parameters. Finally, a more accurate analysis of the experimental data relative to the dependence of the produced electric power at regimen on the fuel valve position, encouraged the authors to develop a further neural simulator able to reproduce the regulation commands for different values of the target power set for the regimen operation. Consequently, also the regulation mapping was revised obtaining a synthetic representation of the regulation logic useful for the implementation in the thermodynamic model of the engine dynamic behaviour.

Suggested Citation

  • Barelli, L. & Bidini, G. & Bonucci, F., 2009. "Development of the regulation mapping of 1Â MW internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 86(7-8), pages 1087-1104, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1087-1104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00144-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De, S. & Kaiadi, M. & Fast, M. & Assadi, M., 2007. "Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden," Energy, Elsevier, vol. 32(11), pages 2099-2109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
    2. Giakoumis, E.G. & Alafouzos, A.I., 2010. "Study of diesel engine performance and emissions during a Transient Cycle applying an engine mapping-based methodology," Applied Energy, Elsevier, vol. 87(4), pages 1358-1365, April.
    3. Barelli, L. & Barluzzi, E. & Bidini, G., 2011. "Modeling of a 1Â MW cogenerative internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 88(8), pages 2702-2712, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    2. Suresh, M.V.J.J. & Reddy, K.S. & Kolar, Ajit Kumar, 2011. "ANN-GA based optimization of a high ash coal-fired supercritical power plant," Applied Energy, Elsevier, vol. 88(12), pages 4867-4873.
    3. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    4. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    5. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
    6. Agha, Mujtaba H. & Thery, Raphaele & Hetreux, Gilles & Hait, Alain & Le Lann, Jean Marc, 2010. "Integrated production and utility system approach for optimizing industrial unit operations," Energy, Elsevier, vol. 35(2), pages 611-627.
    7. Bekat, Tugce & Erdogan, Muharrem & Inal, Fikret & Genc, Ayten, 2012. "Prediction of the bottom ash formed in a coal-fired power plant using artificial neural networks," Energy, Elsevier, vol. 45(1), pages 882-887.
    8. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    9. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Muhammad Farooq & Fahid Riaz & Hassan Afroze Ahmad & Ahmad Hassan Kamal & Saqib Anwar & Ahmed M. El-Sherbeeny & Muhammad Haider Khan & Noman Hafeez & Arman, 2021. "Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics," Energies, MDPI, vol. 14(5), pages 1-18, February.
    10. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    11. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    12. Seijo, Sandra & del Campo, Inés & Echanobe, Javier & García-Sedano, Javier, 2016. "Modeling and multi-objective optimization of a complex CHP process," Applied Energy, Elsevier, vol. 161(C), pages 309-319.
    13. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A method for estimation of recoverable heat from blowdown systems during steam generation," Energy, Elsevier, vol. 35(8), pages 3501-3507.
    14. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    15. Bujak, Janusz, 2009. "Optimal control of energy losses in multi-boiler steam systems," Energy, Elsevier, vol. 34(9), pages 1260-1270.
    16. Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
    17. Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
    18. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Ahmad Hassan Kamal & Muhammad Haider Khan & Awais Ahmad Khan & Hassan Afroze Ahmad & Fahad Ahmed & Noman Hafeez & Rana Muhammad Zawar Sami & Syed Muhammad , 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation," Energies, MDPI, vol. 13(21), pages 1-22, October.
    19. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    20. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1087-1104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.