IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1651-1660.html
   My bibliography  Save this article

Optimization of boiler cold-end and integration with the steam cycle in supercritical units

Author

Listed:
  • Espatolero, Sergio
  • Cortés, Cristóbal
  • Romeo, Luis M.

Abstract

In order to gain an extra increment of efficiency to compensate for capital costs, one of the main issues in the design of advanced supercritical power plants is the reduction of boiler exit gas temperature below typical values of conventional, subcritical units. Currently, the use of heat exchange surfaces made of plastic has become feasible, thereby avoiding corrosion and fouling problems derived from cold-end acid condensate. In this manner, flue gas temperature can be reduced down to typically 90 °C, which obviously leads to an increase of boiler efficiency. Besides, there is an additional energy available for heating the main condensate flow of the power cycle. If modification of air-gas rotary heaters is also considered, a manifold of possibilities opens up for plant optimization and integration of components. The objective of this paper is to analyze this class of schemes for increasing power output and net efficiency of a reference supercritical plant. A complete simulation of the steam cycle is assembled using Aspen Plus and different plant configurations are examined under reduced exit gas temperatures. Several uses of flue gas energy are considered, taking into account limits of temperature and realistic efficiencies of heat exchangers. Mass flow rates, point of extraction of condensate, pressures and temperatures are selected heuristically to optimize performance. Finally, required exchange areas are estimated, and a cost analysis is carried out in order to economically assess the new configurations and estimate the additional profit for the plant.

Suggested Citation

  • Espatolero, Sergio & Cortés, Cristóbal & Romeo, Luis M., 2010. "Optimization of boiler cold-end and integration with the steam cycle in supercritical units," Applied Energy, Elsevier, vol. 87(5), pages 1651-1660, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1651-1660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00436-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escosa, Jesús M. & Romeo, Luis M., 2009. "Optimizing CO2 avoided cost by means of repowering," Applied Energy, Elsevier, vol. 86(11), pages 2351-2358, November.
    2. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    3. Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
    4. Alobaid, Falah & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2009. "Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures," Applied Energy, Elsevier, vol. 86(7-8), pages 1274-1282, July.
    5. Shu, Liwei & Chen, Lingen & Jin, Jiashan & Yu, Jun & Sun, Fengrui & Wu, Chih, 2005. "Functional reliability simulation for a power-station's steam-turbine," Applied Energy, Elsevier, vol. 80(1), pages 61-66, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Gang & Xu, Cheng & Yang, Yongping & Fang, Yaxiong & Zhou, Luyao & Zhang, Kai, 2014. "Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant," Applied Energy, Elsevier, vol. 134(C), pages 363-373.
    2. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    3. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    4. Marcin Jamróz & Marian Piwowarski & Paweł Ziemiański & Gabriel Pawlak, 2021. "Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2018. "Technical and environmental analysis of repowering the existing CHP system in a petrochemical plant: A case study," Energy, Elsevier, vol. 159(C), pages 937-949.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    8. Bracco, Stefano & Siri, Silvia, 2010. "Exergetic optimization of single level combined gas–steam power plants considering different objective functions," Energy, Elsevier, vol. 35(12), pages 5365-5373.
    9. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    10. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Marcin Szega & Tomasz Popławski, 2020. "Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine," Energies, MDPI, vol. 13(10), pages 1-35, May.
    11. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    12. Carapellucci, Roberto & Giordano, Lorena, 2015. "Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines," Applied Energy, Elsevier, vol. 156(C), pages 86-98.
    13. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    14. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    15. Wang, Xinwei & Duan, Liqiang & Zhu, Ziqiang, 2023. "Peak regulation performance study of GTCC based CHP system with compressor inlet air heating method," Energy, Elsevier, vol. 262(PA).
    16. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    17. Ivan Postnikov & Ekaterina Samarkina & Andrey Penkovskii & Vladimir Kornev & Denis Sidorov, 2023. "Modeling Unpredictable Behavior of Energy Facilities to Ensure Reliable Operation in a Cyber-Physical System," Energies, MDPI, vol. 16(19), pages 1-11, October.
    18. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.
    19. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    20. Farahani, Yaser & Jafarian, Ali & Mahdavi Keshavar, Omid, 2022. "Dynamic simulation of a hybrid once-through and natural circulation Heat Recovery Steam Generator (HRSG)," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1651-1660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.