IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5365-5373.html
   My bibliography  Save this article

Exergetic optimization of single level combined gas–steam power plants considering different objective functions

Author

Listed:
  • Bracco, Stefano
  • Siri, Silvia

Abstract

Combined cycle power plants have been studied in this paper with the aim of optimizing the heat recovery steam generator using a first and second law approach. To this end, a mathematical model has been developed for determining the optimal steam pressure in a one pressure level heat recovery steam generator, considering that the gas turbine is known. Different objective functions have been analysed in this study, some of which refer only to the exergy balance of the heat recovery steam generator while others involve the whole bottoming cycle. Some constraints for the operating parameters of the power plant have also been taken into account, regarding for instance the steam quality at the turbine outlet and the steam turbine blade height. Some numerical results have been reported in the paper, comparing the different objective functions for heat recovery steam generators coupled with several gas turbines; the developed parametric analysis has been performed in order to evaluate the influence of some parameters on both the heat recovery steam generator and the whole bottoming cycle.

Suggested Citation

  • Bracco, Stefano & Siri, Silvia, 2010. "Exergetic optimization of single level combined gas–steam power plants considering different objective functions," Energy, Elsevier, vol. 35(12), pages 5365-5373.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5365-5373
    DOI: 10.1016/j.energy.2010.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bassily, A.M., 2007. "Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle," Energy, Elsevier, vol. 32(5), pages 778-794.
    2. Badami, M. & Mura, M., 2010. "Exergetic analysis of an innovative small scale combined cycle cogeneration system," Energy, Elsevier, vol. 35(6), pages 2535-2543.
    3. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    4. Franco, Alessandro & Giannini, Nicola, 2006. "A general method for the optimum design of heat recovery steam generators," Energy, Elsevier, vol. 31(15), pages 3342-3361.
    5. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    6. Casarosa, C. & Donatini, F. & Franco, A., 2004. "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, Elsevier, vol. 29(3), pages 389-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    2. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
    3. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.
    4. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    5. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    6. Sieniutycz, Stanislaw, 2015. "Synthesizing modeling of power generation and power limits in energy systems," Energy, Elsevier, vol. 84(C), pages 255-266.
    7. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    8. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2018. "Technical and environmental analysis of repowering the existing CHP system in a petrochemical plant: A case study," Energy, Elsevier, vol. 159(C), pages 937-949.
    9. Aydin, Hakan, 2013. "Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle," Energy, Elsevier, vol. 57(C), pages 766-774.
    10. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    2. Srinivas, T., 2009. "Study of a deaerator location in triple-pressure reheat combined power cycle," Energy, Elsevier, vol. 34(9), pages 1364-1371.
    3. Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
    4. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    5. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    6. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    7. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
    8. Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
    9. Kotowicz, Janusz & Bartela, Łukasz, 2010. "The influence of economic parameters on the optimal values of the design variables of a combined cycle plant," Energy, Elsevier, vol. 35(2), pages 911-919.
    10. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    11. Rezaie, Ali & Tsatsaronis, George & Hellwig, Udo, 2019. "Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm," Energy, Elsevier, vol. 168(C), pages 346-357.
    12. Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
    13. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    14. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    15. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    16. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    17. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    18. Haddadzade Hendo, Armin & Sanaye, Sepehr, 2024. "Simultaneous economic and exergetic optimization of a municipal solid waste incineration plant for sustainable power generation," Energy, Elsevier, vol. 293(C).
    19. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    20. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5365-5373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.