IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i6p888-894.html
   My bibliography  Save this article

Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services

Author

Listed:
  • Variny, Miroslav
  • Mierka, Otto

Abstract

According to the type of ancillary service provisioned, operation mode of a power plant may change to part load operation. In this contribution, part load operation is understood as delivering a lower power output than possible at given ambient temperature because of gas turbine power output control. If it is economically justified, a power plant may operate in the part load mode for longer time. Part load performance of a newly built 80Â MW combined cycle in Slovakia was studied in order to assess the possibilities for fuel savings. Based on online monitoring data three possibilities were identified: condensate preheating by activation of the currently idle hot water section; change in steam condensing pressure regulation strategy; and the most important gas turbine inlet air preheating. It may seem to be in contradiction with the well proven concept of gas turbine inlet air cooling, which has however been developed for boosting the gas turbine cycles in full load operation. On the contrary, in a combined cycle in the part load operation mode, elevated inlet air temperature does not affect the part load operation of gas turbines but it causes more high pressure steam to be raised in HRSG, which leads to higher steam turbine power output. As a result, less fuel needs to be combusted in gas turbines in order to achieve the requested combined cycle's power output. By simultaneous application of all three proposals, more than a 2% decrease in the power plant's natural gas consumption can be achieved with only minor capital expenses needed.

Suggested Citation

  • Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:6:p:888-894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00279-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Modesto, M. & Nebra, S.A., 2006. "Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method," Energy, Elsevier, vol. 31(15), pages 3261-3277.
    2. Chuang, Chia-Chin & Sue, Deng-Chern, 2005. "Performance effects of combined cycle power plant with variable condenser pressure and loading," Energy, Elsevier, vol. 30(10), pages 1793-1801.
    3. Kristiansen, Tarjei, 2007. "The Nordic approach to market-based provision of ancillary services," Energy Policy, Elsevier, vol. 35(7), pages 3681-3700, July.
    4. Kim, T.S & Ro, S.T, 2000. "Power augmentation of combined cycle power plants using cold energy of liquefied natural gas," Energy, Elsevier, vol. 25(9), pages 841-856.
    5. Kakaras, E. & Doukelis, A. & Karellas, S., 2004. "Compressor intake-air cooling in gas turbine plants," Energy, Elsevier, vol. 29(12), pages 2347-2358.
    6. Raineri, R. & Rios, S. & Schiele, D., 2006. "Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison," Energy Policy, Elsevier, vol. 34(13), pages 1540-1555, September.
    7. Sue, Deng-Chern & Chuang, Chia-Chin, 2004. "Engineering design and exergy analyses for combustion gas turbine based power generation system," Energy, Elsevier, vol. 29(8), pages 1183-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    2. Wang, Xinwei & Duan, Liqiang & Zhu, Ziqiang, 2023. "Peak regulation performance study of GTCC based CHP system with compressor inlet air heating method," Energy, Elsevier, vol. 262(PA).
    3. Li, Yongyi & Lin, Yuchao & He, Yichong & Zhang, Guoqiang & Zhang, Lei & Yang, Jianmeng & Sun, Enhui, 2023. "Part-load performance analysis of a dual-recuperated gas turbine combined cycle system," Energy, Elsevier, vol. 269(C).
    4. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    5. Espatolero, Sergio & Cortés, Cristóbal & Romeo, Luis M., 2010. "Optimization of boiler cold-end and integration with the steam cycle in supercritical units," Applied Energy, Elsevier, vol. 87(5), pages 1651-1660, May.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    8. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    9. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    10. ZhiTan Liu & XiaoDong Ren & ZhiYuan Yan & HongFei Zhu & Tao Zhang & Wei Zhu & XueSong Li, 2019. "Effect of Inlet Air Heating on Gas Turbine Efficiency under Partial Load," Energies, MDPI, vol. 12(17), pages 1-11, August.
    11. Xu, Gang & Xu, Cheng & Yang, Yongping & Fang, Yaxiong & Zhou, Luyao & Zhang, Kai, 2014. "Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant," Applied Energy, Elsevier, vol. 134(C), pages 363-373.
    12. Wang, Zefeng & Han, Wei & Zhang, Na & Su, Bosheng & Gan, Zhongxue & Jin, Hongguang, 2018. "Effects of different alternative control methods for gas turbine on the off-design performance of a trigeneration system," Applied Energy, Elsevier, vol. 215(C), pages 227-236.
    13. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Variny, Miroslav & Mierka, Otto, 2011. "Technologic, economic and exergoeconomic evaluation of proposed industrial heat and power plant revamp alternatives in an industrial company in Slovakia," Energy, Elsevier, vol. 36(1), pages 424-437.
    15. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    16. Tică, Adrian & Guéguen, Hervé & Dumur, Didier & Faille, Damien & Davelaar, Frans, 2012. "Design of a combined cycle power plant model for optimization," Applied Energy, Elsevier, vol. 98(C), pages 256-265.
    17. Han, Wei & Chen, Qiang & Lin, Ru-mou & Jin, Hong-guang, 2015. "Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine," Applied Energy, Elsevier, vol. 138(C), pages 160-168.
    18. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Variny, Miroslav & Mierka, Otto, 2011. "Technologic, economic and exergoeconomic evaluation of proposed industrial heat and power plant revamp alternatives in an industrial company in Slovakia," Energy, Elsevier, vol. 36(1), pages 424-437.
    2. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    3. Viktorija Bobinaite & Artjoms Obushevs & Irina Oleinikova & Andrei Morch, 2018. "Economically Efficient Design of Market for System Services under the Web-of-Cells Architecture," Energies, MDPI, vol. 11(4), pages 1-29, March.
    4. Muñoz, J. & Martínez-Val, J.M. & Abbas, R. & Abánades, A., 2012. "Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas," Applied Energy, Elsevier, vol. 92(C), pages 429-436.
    5. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    6. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    7. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    8. Yang, Yongping & Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Wang, Ziyu & Yu, Guangying, 2019. "Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating," Energy, Elsevier, vol. 178(C), pages 386-399.
    9. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    10. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    11. Abdulrahman Almutairi & Pericles Pilidis & Nawaf Al-Mutawa, 2015. "Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance," Energies, MDPI, vol. 8(12), pages 1-18, December.
    12. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    13. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    14. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    15. Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
    16. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-168.
    17. Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
    18. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    19. Barroco, Jose, 2021. "Designing financeable ancillary services revenue contracts in developing economies: Learnings from the Philippines," Energy Policy, Elsevier, vol. 152(C).
    20. Hirth, Lion & Ziegenhagen, Inka, 2013. "Control Power and Variable Renewables A Glimpse at German Data," Energy: Resources and Markets 151373, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:6:p:888-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.