IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp145-154.html
   My bibliography  Save this article

Transient heat conduction in an infinite medium subjected to multiple cylindrical heat sources: An application to shallow geothermal systems

Author

Listed:
  • BniLam, Noori
  • Al-Khoury, Rafid

Abstract

In this paper, we introduce analytical solutions for transient heat conduction in an infinite solid mass subjected to a varying single or multiple cylindrical heat sources. The solutions are formulated for two types of boundary conditions: a time-dependent Neumann boundary condition, and a time-dependent Dirichlet boundary condition. We solve the initial and boundary value problem for a single heat source using the modified Bessel function, for the spatial domain, and the fast Fourier transform, for the temporal domain. For multiple heat sources, we apply directly the superposition principle for the Neumann boundary condition, but for the Dirichlet boundary condition, we conduct an analytical coupling, which allows for the exact thermal interaction between all involved heat sources. The heat sources can exhibit different time-dependent signals, and can have any distribution in space. The solutions are verified against the analytical solution given by Carslaw and Jaeger for a constant Neumann boundary condition, and the finite element solution for both types of boundary conditions. Compared to these two solutions, the proposed solutions are exact at all radial distances, highly elegant, robust and easy to implement.

Suggested Citation

  • BniLam, Noori & Al-Khoury, Rafid, 2016. "Transient heat conduction in an infinite medium subjected to multiple cylindrical heat sources: An application to shallow geothermal systems," Renewable Energy, Elsevier, vol. 97(C), pages 145-154.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:145-154
    DOI: 10.1016/j.renene.2016.05.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Yanzhong & Teng, Bailu & Luo, Wanjing, 2024. "A new semi-analytical model for studying the performance of deep U-shaped borehole heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    2. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    2. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    3. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    4. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    5. Kim, Eui-Jong & Bernier, Michel & Cauret, Odile & Roux, Jean-Jacques, 2014. "A hybrid reduced model for borehole heat exchangers over different time-scales and regions," Energy, Elsevier, vol. 77(C), pages 318-326.
    6. Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.
    7. Blanco, David L. & Nagano, Katsunori & Morimoto, Masahiro, 2013. "Impact of control schemes of a monovalent inverter-driven water-to-water heat pump with a desuperheater in continental and subtropical climates through simulation," Applied Energy, Elsevier, vol. 109(C), pages 374-386.
    8. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    9. Li, Min & Li, Ping & Chan, Vincent & Lai, Alvin C.K., 2014. "Full-scale temperature response function (G-function) for heat transfer by borehole ground heat exchangers (GHEs) from sub-hour to decades," Applied Energy, Elsevier, vol. 136(C), pages 197-205.
    10. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    11. Seama Koohi-Fayegh & Marc A. Rosen, 2013. "A Review of the Modelling of Thermally Interacting Multiple Boreholes," Sustainability, MDPI, vol. 5(6), pages 1-18, June.
    12. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    13. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    14. Guolong Li & Dongliang Sun & Dongxu Han & Bo Yu, 2022. "A Novel Layered Slice Algorithm for Soil Heat Storage and Its Solving Performance Analysis," Energies, MDPI, vol. 15(10), pages 1-23, May.
    15. Lee, C.K. & Lam, H.N., 2012. "A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow," Energy, Elsevier, vol. 47(1), pages 378-387.
    16. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    17. Franco, A. & Moffat, R. & Toledo, M. & Herrera, P., 2016. "Numerical sensitivity analysis of thermal response tests (TRT) in energy piles," Renewable Energy, Elsevier, vol. 86(C), pages 985-992.
    18. Esen, Hikmet & Inalli, Mustafa & Esen, Yuksel, 2009. "Temperature distributions in boreholes of a vertical ground-coupled heat pump system," Renewable Energy, Elsevier, vol. 34(12), pages 2672-2679.
    19. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    20. Lee, C.K., 2010. "Dynamic performance of ground-source heat pumps fitted with frequency inverters for part-load control," Applied Energy, Elsevier, vol. 87(11), pages 3507-3513, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:145-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.