IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i6p1846-1857.html
   My bibliography  Save this article

Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system

Author

Listed:
  • Möller, Bernd
  • Lund, Henrik

Abstract

Replacing individual natural gas heating with district heating based to increasing shares of renewable energy sources may further reduce CO2-emissions in the Danish Building mass, while increasing flexibility of the energy system to accommodate significantly larger amounts of variable renewable energy production. The present paper describes a geographical study of the potential to expand district heating into areas supplied with natural gas. The study uses a highly detailed spatial database of the built environment, its current and potential future energy demand, its supply technologies and its location relative to energy infrastructure. First, using a spatially explicit economic model, the study calculates the potentials and costs of connection to expanded district heating networks by supply technology. Then a comprehensive energy systems analysis is carried out to model how the new district heat can be supplied from an energy system with higher shares of renewable energy. It can be concluded on the basis of these analyses that the methods used proved highly useful to address issues of geographically dependent energy supply; however the spatio-economic model still is rather crude. The analyses suggest to expand district heating from present 46% to somewhere in between 50% and 70%. The most attractive potential is located around towns and cities. The study also suggests that CO2-emissions, fuel consumption and socio-economic costs can be reduced by expanding district heating, while at the same time investing in energy savings in the building mass as well as increased district heating network efficiency.

Suggested Citation

  • Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:6:p:1846-1857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00524-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    2. Mahapatra, Krushna & Gustavsson, Leif, 2009. "Influencing Swedish homeowners to adopt district heating system," Applied Energy, Elsevier, vol. 86(2), pages 144-154, February.
    3. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    4. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    5. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    6. Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
    7. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    8. Lygnerud, Kristina & Peltola-Ojala, Päivi, 2010. "Factors impacting district heating companies' decision to provide small house customers with heat," Applied Energy, Elsevier, vol. 87(1), pages 185-190, January.
    9. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    10. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    11. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    12. Blarke, M.B. & Lund, H., 2008. "The effectiveness of storage and relocation options in renewable energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1499-1507.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    4. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
    5. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    6. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    7. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    8. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    9. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    10. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    11. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    12. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    13. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    14. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
    15. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    16. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    17. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    19. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    20. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:6:p:1846-1857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.