IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v53y2013icp252-258.html
   My bibliography  Save this article

Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies

Author

Listed:
  • Li, Danny H.W.
  • Chau, Natalie T.C.
  • Wan, Kevin K.W.

Abstract

Solar irradiance and outdoor illuminance, particularly on vertical surfaces are crucial to energy-efficient building designs and daylighting schemes. In Hong Kong, only hourly horizontal global solar radiation data have been systematically recorded for a long period but no measurements of daylight illuminance exist. In 2003, the International Commission on Illumination (CIE) adopted a range of 15 standard skies covering the whole probable spectrum of skies in the world. Standard skies of the same category would have the identical well-defined sky radiance and luminance distributions. Once the skies are identified, the basic solar irradiance and daylight illuminance at the surfaces of interest can be obtained, involving simple mathematical expressions. This study presents a numerical approach to predict the vertical solar irradiance and daylight illuminance based on the CIE standard skies. Climatic parameters recorded between January 2004 and December 2005 are used in the analysis. The performance of the calculation method is evaluated against data measured in the same period. The annual RMSEs were found ranging from 17.7% to 20.8% for daylight illuminance prediction and 17.9%–19.8% for solar irradiance estimation. The findings provide an alternative to compute solar irradiance and daylight illuminance on vertical surfaces facing various orientations.

Suggested Citation

  • Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
  • Handle: RePEc:eee:energy:v:53:y:2013:i:c:p:252-258
    DOI: 10.1016/j.energy.2013.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    2. Kittler, R. & Darula, S., 2002. "Parametric definition of the daylight climate," Renewable Energy, Elsevier, vol. 26(2), pages 177-187.
    3. Li, Danny H.W. & Lau, Chris C.S. & Lam, Joseph C., 2005. "Predicting daylight illuminance on inclined surfaces using sky luminance data," Energy, Elsevier, vol. 30(9), pages 1649-1665.
    4. Li, Danny H.W & Lam, Joseph C, 2002. "A study of atmospheric turbidity for Hong Kong," Renewable Energy, Elsevier, vol. 25(1), pages 1-13.
    5. Li, D.H.W & Lam, J.C & Wong, S.L, 2002. "Daylighting and its implications to overall thermal transfer value (OTTV) determinations," Energy, Elsevier, vol. 27(11), pages 991-1008.
    6. Markou, M.T. & Kambezidis, H.D. & Bartzokas, A. & Katsoulis, B.D. & Muneer, T., 2005. "Sky type classification in Central England during winter," Energy, Elsevier, vol. 30(9), pages 1667-1674.
    7. Li, D.H.W. & Lam, J.C. & Wong, S.L., 2005. "Daylighting and its effects on peak load determination," Energy, Elsevier, vol. 30(10), pages 1817-1831.
    8. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    9. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    10. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    11. De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2008. "Calculating diffuse illuminance on vertical surfaces in different sky conditions," Energy, Elsevier, vol. 33(11), pages 1703-1710.
    12. Karasu, Servet, 2010. "The effect of daylight saving time options on electricity consumption of Turkey," Energy, Elsevier, vol. 35(9), pages 3773-3782.
    13. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    2. Suk-jin Jung & Seong-hwan Yoon, 2018. "Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices," Energies, MDPI, vol. 11(7), pages 1-19, July.
    3. Yuwei Zhang & Peng Xue & Yifan Zhao & Zhikai Ni & Yani Quan & Jingchao Xie & Jiaping Liu, 2023. "A Novel Evaluation Method of Tunnel Access Zone Luminance Based on Measured Meteorological Data," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    4. Yao, Wanxiang & Zhang, Kang & Cao, Weixue & Li, Xianli & Wang, Yan & Wang, Xiao, 2022. "Research on the correlation between solar radiation and sky luminance based on the principle of photothermal integration," Renewable Energy, Elsevier, vol. 194(C), pages 1326-1342.
    5. Dal Pai, Alexandre & Escobedo, João Francisco & Dal Pai, Enzo & de Oliveira, Amauri Pereira & Soares, Jacyra Ramos & Codato, Georgia, 2016. "MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover," Renewable Energy, Elsevier, vol. 99(C), pages 754-763.
    6. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    7. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    8. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    9. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    10. Judit Lopez-Besora & Glòria Serra-Coch & Helena Coch & Antonio Isalgue, 2016. "Daylight Management in Mediterranean Cities: When Shortage Is Not the Issue," Energies, MDPI, vol. 9(9), pages 1-12, September.
    11. To, W.M., 2014. "Association between energy use and poor visibility in Hong Kong SAR, China," Energy, Elsevier, vol. 68(C), pages 12-20.
    12. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    13. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    14. Ramírez-Faz, J. & López-Luque, R. & Casares, F.J., 2015. "Development of synthetic hemispheric projections suitable for assessing the sky view factor on vertical planes," Renewable Energy, Elsevier, vol. 74(C), pages 279-286.
    15. Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    2. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    3. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    4. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    5. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    6. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    7. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    8. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    9. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    11. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    12. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    13. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    14. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    15. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    16. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    17. Yao, Wanxiang & Zhang, Kang & Cao, Weixue & Li, Xianli & Wang, Yan & Wang, Xiao, 2022. "Research on the correlation between solar radiation and sky luminance based on the principle of photothermal integration," Renewable Energy, Elsevier, vol. 194(C), pages 1326-1342.
    18. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    19. Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
    20. Li, Danny H.W. & Lam, Tony N.T. & Cheung, K.L. & Tang, H.L., 2008. "An analysis of luminous efficacies under the CIE standard skies," Renewable Energy, Elsevier, vol. 33(11), pages 2357-2365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:53:y:2013:i:c:p:252-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.