IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v80y2005i3p273-289.html
   My bibliography  Save this article

Performance parameters of an ejector-absorption heat transformer

Author

Listed:
  • Sözen, Adnan
  • Arcaklioglu, Erol
  • Özalp, Mehmet
  • Yücesu, Serdar

Abstract

Ejector-absorption heat transformers (EAHTs) are attractive for increasing a solar-pond's temperature and for recovering low-level waste-heat. Thermodynamic analysis of the performance of an EAHT is complicated due to the associated complex differential equations and simulation programs. This paper proposes the use of artificial neural-networks (ANNs) as a new approach to determine the performance parameters, as functions of only the working temperatures of the EAHT, which is used to increase the solar pond's temperature under various working conditions. Thus, this study is helpful in predicting the performance of an EAHT where the temperatures are known. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was investigated for performance parameters with developed software using various algorithms. The best statistical coefficients of multiple determinations (R2-values) equal 0.99995, 0.99997 and 0.99995 for the coefficient of performance (COP), exergetic coefficient of performance (ECOP) and circulation ratio (F), respectively obtained by the LM algorithm with seven neurons. In the comparison of performances, results obtained via analytic equations and by means of the ANN, the COP, ECOP and F for all working situations differ by less than 1.05%, 0.7% and 3.07%, respectively. These accuracies are acceptable in the design of the EAHT. The ANN approach greatly reduces the time required by design engineers to find the optimum solution. Apart from reducing the time required, it is possible to find solutions that make solar-energy applications more viable and thus more attractive to potential users. Also, this approach has the advantages of high computational speed, low cost for feasibility, rapid turn-around, which is especially important during iterative design phases, and ease of design by operators with little technical experience.

Suggested Citation

  • Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Yücesu, Serdar, 2005. "Performance parameters of an ejector-absorption heat transformer," Applied Energy, Elsevier, vol. 80(3), pages 273-289, March.
  • Handle: RePEc:eee:appene:v:80:y:2005:i:3:p:273-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00057-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    2. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    3. Kalogirou, Soteris A & Panteliou, Sofia & Dentsoras, Argiris, 1999. "Artificial neural networks used for the performance prediction of a thermosiphon solar water heater," Renewable Energy, Elsevier, vol. 18(1), pages 87-99.
    4. Shi, Lin & Yin, Juan & Wang, Xin & Zhu, Ming-Shan, 2001. "Study on a new ejection-absorption heat transformer," Applied Energy, Elsevier, vol. 68(2), pages 161-171, February.
    5. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    6. Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    2. Hernández, J.A. & Bassam, A. & Siqueiros, J. & Juárez-Romero, D., 2009. "Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse," Renewable Energy, Elsevier, vol. 34(4), pages 1084-1091.
    3. Donnellan, Philip & Byrne, Edmond & Oliveira, Jorge & Cronin, Kevin, 2014. "First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)," Applied Energy, Elsevier, vol. 113(C), pages 141-151.
    4. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    2. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    5. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    6. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    7. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    9. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    10. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    11. Kicsiny, R. & Nagy, J. & Szalóki, Cs., 2014. "Extended ordinary differential equation models for solar heating systems with pipes," Applied Energy, Elsevier, vol. 129(C), pages 166-176.
    12. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    13. Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
    14. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    15. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    16. Sözen, Adnan & Arcaklıoğlu, Erol & Özalp, Mehmet & Çağlar, Naci, 2005. "Forecasting based on neural network approach of solar potential in Turkey," Renewable Energy, Elsevier, vol. 30(7), pages 1075-1090.
    17. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    18. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    19. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    20. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:80:y:2005:i:3:p:273-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.