IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v18y1999i1p87-99.html
   My bibliography  Save this article

Artificial neural networks used for the performance prediction of a thermosiphon solar water heater

Author

Listed:
  • Kalogirou, Soteris A
  • Panteliou, Sofia
  • Dentsoras, Argiris

Abstract

Artificial Neural Networks (ANN) are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant, are able to deal with non-linear problems, and once trained can perform prediction at high speed. ANNs have been used in diverse applications and they have shown to be particularly effective in system modelling as well as for system identification. The objective of this work is to train an artificial neural network (ANN) to learn to predict the performance of a thermosiphon solar domestic water heating system. This performance is measured in terms of the useful energy extracted and of the stored water temperature rise. An ANN has been trained using performance data for four types of systems, all employing the same collector panel under varying weather conditions. In this way the network was trained to accept and handle a number of unusual cases. The data presented as input were, the storage tank heat loss coefficient (U-value), the type of system (open or closed), the storage volume, and a total of fifty-four readings from real experiments of total daily solar radiation, total daily diffuse radiation, ambient air temperature, and the water temperature in storage tank at the beginning of the day. The network output is the useful energy extracted from the system and the water temperature rise. The statistical coefficient of multiple determination (R2-value) obtained for the training data set was equal to 0.9914 and 0.9808 for the two output parameters respectively. Both values are satisfactory because the closer R2-value is to unity the better is the mapping. Unknown data for all four systems were subsequently used to investigate the accuracy of prediction. These include performance data for the systems considered for the training of the network at different weather conditions. Predictions with maximum deviations of 1 MJ and 2.2°C were obtained respectively. Random data were also used both with the performance equations obtained from the experimental measurements and with the artificial neural network to predict the above two parameters. The predicted values thus obtained were very comparable. These results indicate that the proposed method can successfully be used for the estimation of the performance of the particular thermosiphon system at any of the different types of configuration used here. The greatest advantage of the present model is the capacity of the network to learn from examples and thus gradually improve its performance. This is done by embedding experimental knowledge in the network.

Suggested Citation

  • Kalogirou, Soteris A & Panteliou, Sofia & Dentsoras, Argiris, 1999. "Artificial neural networks used for the performance prediction of a thermosiphon solar water heater," Renewable Energy, Elsevier, vol. 18(1), pages 87-99.
  • Handle: RePEc:eee:renene:v:18:y:1999:i:1:p:87-99
    DOI: 10.1016/S0960-1481(98)00787-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198007873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00787-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    2. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    3. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    4. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    6. Vera-Medina, J. & Fernandez-Peruchena, C. & Guasumba, J. & Lillo-Bravo, I., 2021. "Performance analysis of factory-made thermosiphon solar water heating systems," Renewable Energy, Elsevier, vol. 164(C), pages 1215-1229.
    7. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    8. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Yücesu, Serdar, 2005. "Performance parameters of an ejector-absorption heat transformer," Applied Energy, Elsevier, vol. 80(3), pages 273-289, March.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    11. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    12. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:18:y:1999:i:1:p:87-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.