IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i4p1084-1091.html
   My bibliography  Save this article

Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse

Author

Listed:
  • Hernández, J.A.
  • Bassam, A.
  • Siqueiros, J.
  • Juárez-Romero, D.

Abstract

Artificial neural network inverse (ANNi) is applied to calculate the optimal operating conditions on the coefficient of performance (COP) for a water purification process integrated to an absorption heat transformer with energy recycling. An artificial neural network (ANN) model is developed to predict the COP which was increased with energy recycling. This ANN model takes into account the input and output temperatures for each one of the four components (absorber, generator, evaporator, and condenser), as well as two pressures and LiBr+H2O concentrations. For the network, a feedforward with one hidden layer, a Levenberg–Marquardt learning algorithm, a hyperbolic tangent sigmoid transfer function and a linear transfer function were used. The best fitting training data set was obtained with three neurons in the hidden layer. On the validation data set, simulations and experimental data test were in good agreement (R>0.99). This ANN model can be used to predict the COP when the input variables (operating conditions) are well known. However, to control the COP in the system, we developed a strategy to estimate the optimal input variables when a COP is required from ANNi. An optimization method (the Nelder–Mead simplex method) is used to fit the unknown input variable resulted from the ANNi. This methodology can be applied to control on-line the performance of the system.

Suggested Citation

  • Hernández, J.A. & Bassam, A. & Siqueiros, J. & Juárez-Romero, D., 2009. "Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse," Renewable Energy, Elsevier, vol. 34(4), pages 1084-1091.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1084-1091
    DOI: 10.1016/j.renene.2008.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    2. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Yücesu, Serdar, 2005. "Performance parameters of an ejector-absorption heat transformer," Applied Energy, Elsevier, vol. 80(3), pages 273-289, March.
    3. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
    2. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    3. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    4. Lazcano-Véliz, Y. & Hernández, J.A. & Juárez-Romero, D. & Bourouis, Mahmoud & Coronas, Alberto & Siqueiros, J., 2017. "Energy efficiency assessment in the generator of an absorption heat transformer from measurement falling film thickness on helical coils," Applied Energy, Elsevier, vol. 208(C), pages 1274-1284.
    5. Álvarez, María E. & Hernández, José A. & Bourouis, Mahmoud, 2016. "Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks," Energy, Elsevier, vol. 102(C), pages 313-323.
    6. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
    7. Colorado, D. & Hernández, J.A. & El Hamzaoui, Y. & Bassam, A. & Siqueiros, J. & Andaverde, J., 2011. "Error propagation on COP prediction by artificial neural network in a water purification system integrated to an absorption heat transformer," Renewable Energy, Elsevier, vol. 36(5), pages 1315-1322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    2. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    3. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    4. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    6. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    7. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    8. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    9. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    10. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    11. Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
    12. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    13. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    14. Kicsiny, Richárd, 2018. "Black-box model for solar storage tanks based on multiple linear regression," Renewable Energy, Elsevier, vol. 125(C), pages 857-865.
    15. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    16. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    17. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    18. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    19. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    20. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1084-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.