Forecasting based on neural network approach of solar potential in Turkey
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2004.09.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
- Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
- Toğrul, İnci Türk & Toğrul, Hasan & Evin, Dugyu, 2000. "Estimation of monthly global solar radiation from sunshine duration measurement in Elaziğ," Renewable Energy, Elsevier, vol. 19(4), pages 587-595.
- Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
- Gopinathan, K.K. & Soler, Alfonso, 1996. "Effect of sunshine and solar declination on the computation of monthly mean daily diffuse solar radiation," Renewable Energy, Elsevier, vol. 7(1), pages 89-93.
- Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
- Hejase, Hassan A.N. & Al-Shamisi, Maitha H. & Assi, Ali H., 2014. "Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks," Energy, Elsevier, vol. 77(C), pages 542-552.
- Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
- Soyhan, Hakan S., 2009. "Sustainable energy production and consumption in Turkey: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1350-1360, August.
- Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
- Azadeh, A. & Sheikhalishahi, M. & Asadzadeh, S.M., 2011. "A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity," Renewable Energy, Elsevier, vol. 36(12), pages 3394-3401.
- Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
- Batman, Alp & Bagriyanik, F. Gul & Aygen, Z. Elif & Gül, Ömer & Bagriyanik, Mustafa, 2012. "A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5678-5686.
- Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
- Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
- Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sözen, Adnan & Arcaklioglu, Erol, 2005. "Solar potential in Turkey," Applied Energy, Elsevier, vol. 80(1), pages 35-45, January.
- Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
- Sözen, Adnan & Arcakliog[caron]lu, Erol, 2005. "Effect of relative humidity on solar potential," Applied Energy, Elsevier, vol. 82(4), pages 345-367, December.
- Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
- Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2005. "Solar-energy potential in Turkey," Applied Energy, Elsevier, vol. 80(4), pages 367-381, April.
- Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
- Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
- Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
- Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
- Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
- Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
- Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
- Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Mubiru, J., 2008. "Predicting total solar irradiation values using artificial neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2329-2332.
- Kljajić, Miroslav & Gvozdenac, Dušan & Vukmirović, Srdjan, 2012. "Use of Neural Networks for modeling and predicting boiler's operating performance," Energy, Elsevier, vol. 45(1), pages 304-311.
- Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
- Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
- Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
- Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
More about this item
Keywords
Solar energy potential; City; Turkey; Artiflcial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:7:p:1075-1090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.