IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipbs0306261924022578.html
   My bibliography  Save this article

Optimization of a catalyst layer with a high-utilization gradient Pt distribution for polymer electrolyte membrane fuel cells

Author

Listed:
  • Wang, Yulin
  • Qi, Lixia
  • Ma, Fei
  • Li, Hua
  • Ma, Shuai
  • Wang, Cheng
  • He, Wei
  • Wang, Shixue

Abstract

The optimal design of platinum (Pt) particles distribution within catalyst layer (CL) favors their utilization and the polymer electrolyte membrane fuel cell (PEMFC) performance. A stochastic algorithm is employed in this study to reconstruct the 2D microstructure of the CL by considering the random distribution of carbon carriers and ionomers and a novel double-gradient distribution of Pt particles. The double-gradient Pt-distributed CLs feature double dividend regions of equal and unequal lengths. Subsequently, the reaction transport process within these double-gradient CLs is numerically investigated by a lattice Boltzmann (LB) method. The numerical results indicate that the reaction transport process within the double-gradient CLs differs greatly from that within conventional CLs. With the total Pt particle number constant, increasing the Pt particle number within the inlet region of the CL initially improves and consequently degrades the oxygen reduce reaction (ORR), whereas a reverse design always leads to a reduced ORR. The optimal CL gradient for double dividend regions of equal length occurs when the ratio of Pt particle number in the inlet region to that in the outlet region (Ptin:Ptout) is 5:1, which leads to a 28.85 % increase in the ORR rate compared with that of the conventional CL. Moreover, for the gradient CL with double dividend regions of unequal length, we find that the optimal ratios of Lin:Lout and Ptin:Ptout are 1:4 and 6:1, respectively; this gradient CL yields a 58.65 % increase in the ORR compared with that of the conventional CL.

Suggested Citation

  • Wang, Yulin & Qi, Lixia & Ma, Fei & Li, Hua & Ma, Shuai & Wang, Cheng & He, Wei & Wang, Shixue, 2025. "Optimization of a catalyst layer with a high-utilization gradient Pt distribution for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 378(PB).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pb:s0306261924022578
    DOI: 10.1016/j.apenergy.2024.124874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Roshandel, Ramin & Ahmadi, Farzad, 2013. "Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 50(C), pages 921-931.
    3. Fu, Ya-Lu & Zhang, Biao & Zhu, Xun & Ye, Ding-Ding & Sui, Pang-Chieh & Djilali, Ned, 2020. "Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells," Applied Energy, Elsevier, vol. 277(C).
    4. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    5. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    7. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    2. Lai, Tao & Qu, Zhiguo, 2023. "Two polytetrafluoroethylene distribution effects on liquid water dynamic behavior in gas diffusion layer of polymer electrolyte membrane fuel cell with a pore-scale method," Energy, Elsevier, vol. 271(C).
    3. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2024. "Investigating and quantifying the effects of catalyst layer gradients, operating conditions, and their interactions on PEMFC performance through global sensitivity analysis," Energy, Elsevier, vol. 290(C).
    4. Dou, Shaojun & Hao, Liang & Liu, Hong, 2023. "Effects of carbon aggregates and ionomer distribution on the performance of PEM fuel cell catalyst layer: A pore-scale study," Renewable Energy, Elsevier, vol. 217(C).
    5. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    6. Xuan, Zi-Hao & Fang, Wen-Zhen & Zhao, Guo-Rui & Tao, Wen-Quan, 2025. "Optimal gradient designs of catalyst layers for boosting performance: A data-driven-assisted model," Applied Energy, Elsevier, vol. 377(PD).
    7. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    8. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    9. Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
    11. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    12. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    13. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    15. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    16. Xu, Chenyang & Wang, Jian & Wang, Jianzhong & Yang, Kun & Li, Guangzhong & Gao, Wenbin & Wang, Hao & Zhao, Shaoyang, 2024. "Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers," Applied Energy, Elsevier, vol. 357(C).
    17. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    18. Ebrahimi, Sasan & Ghorbani, Babak & Vijayaraghavan, Krishna, 2017. "Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm," Renewable Energy, Elsevier, vol. 113(C), pages 846-854.
    19. Namazi, Mohammadmehdi & Nayebi, Mohammadreza & Isazadeh, Amin & Modarresi, Ali & Marzbali, Iman Ghasemi & Hosseinalipour, Seyed Mostafa, 2022. "Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media," Energy, Elsevier, vol. 238(PB).
    20. Ding, Gaoya & Cao, Xuewen & Chen, Junwen & Zhang, Yue & Bian, Jiang, 2024. "Impact of the expansion ratio on the properties of hydrogen recirculation ejectors," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pb:s0306261924022578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.