IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp846-854.html
   My bibliography  Save this article

Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm

Author

Listed:
  • Ebrahimi, Sasan
  • Ghorbani, Babak
  • Vijayaraghavan, Krishna

Abstract

In this paper, a new approach is presented to find the optimum catalyst loading distribution along the flow field. The optimization is performed by integrating a computational fluid dynamic (CFD) model and genetic algorithm optimization method. The CFD model is two-dimensional, steady state and two-phase. Multiphase mixture model (M2) is used to model two-phase transport in porous media of a Polymer Electrolyte Membrane Fuel Cell (PEMFC). Numerical domain includes channel, gas diffusion layer (GDL) and catalyst layer (CL) in the cathode side. In the next step, current density is assumed to be proportional with catalyst loading. Catalyst loading is considered as polynomial functions with unknown coefficients. Genetic algorithm optimization method is applied to find the unknown coefficients and as a result the optimum catalyst loading function along the flow field. The results indicate that catalyst loading distribution has a significant effect on the fuel cell performance and it is seen that in the optimum case, maximum PEMFC power density is increased by about 14%.

Suggested Citation

  • Ebrahimi, Sasan & Ghorbani, Babak & Vijayaraghavan, Krishna, 2017. "Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm," Renewable Energy, Elsevier, vol. 113(C), pages 846-854.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:846-854
    DOI: 10.1016/j.renene.2017.06.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roshandel, Ramin & Ahmadi, Farzad, 2013. "Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 50(C), pages 921-931.
    2. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    3. Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    2. Qian, Zhang & Hongwei, Wang & Chunlei, Liu & Yi, An, 2024. "Establishment and identification of MIMO fractional Hammerstein model with colored noise for PEMFC system," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Feng, ShengSen & Huang, WenTao & Huang, Zhe & Jian, Qifei, 2022. "Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model," Applied Energy, Elsevier, vol. 317(C).
    4. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2023. "Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC," Energy, Elsevier, vol. 262(PB).
    5. Wei, Pengnan & Chang, Guofeng & Fan, Ruijia & Xu, Yiming & Chen, Siqi, 2023. "Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    2. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    3. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    4. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    5. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    6. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    7. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    8. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    9. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    11. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).
    12. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    13. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    14. Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).
    15. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    16. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    17. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    18. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    19. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    20. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2024. "Investigating and quantifying the effects of catalyst layer gradients, operating conditions, and their interactions on PEMFC performance through global sensitivity analysis," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:846-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.