IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920310485.html
   My bibliography  Save this article

Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells

Author

Listed:
  • Fu, Ya-Lu
  • Zhang, Biao
  • Zhu, Xun
  • Ye, Ding-Ding
  • Sui, Pang-Chieh
  • Djilali, Ned

Abstract

The air-breathing membraneless microfluidic fuel cell is one of the potential micro-fuel cells. Different from conventional membrane-based micro-fuel cells, its cathode catalyst layer directly contacts with flowing aqueous electrolyte. This makes it essential to well understand the oxygen transport, dissolve and reaction in cathode catalyst layer of the microfluidic fuel cell. For the first time, a pore-scale Lattice Boltzmann method model is developed for the cathode catalyst layer with an underneath electrolyte microchannel. The various nanostructured catalyst layers are numerically reconstructed. The effects of key components (ionomer and catalyst mass fractions) and geometric parameters (porosity, isotropy) on oxygen transport and reaction are investigated and discussed. The modeling results suggest that local oxygen concentration and reaction rate are closely correlated to nanostructure. Oxygen transfer can be enhanced by increasing the porosity yet ionomer is found to be extra resistance. The ionomer and catalyst mass fractions have complex effects on oxygen transfer and reaction. Vertical-anisotropic catalyst layers benefit oxygen transfer, thus ordered nanostructure of cathode catalyst layer holds great potentials to enhance performance. The electrolyte flow rate shows the minimum influence on oxygen transfer and reaction. The modeling results can provide insights into multiphysics interaction and characteristics of oxygen transport in air-breathing cathode and also be reference for flow in porous media involving electrochemical reactions.

Suggested Citation

  • Fu, Ya-Lu & Zhang, Biao & Zhu, Xun & Ye, Ding-Ding & Sui, Pang-Chieh & Djilali, Ned, 2020. "Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310485
    DOI: 10.1016/j.apenergy.2020.115536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
    2. Kwok, Y.H. & Wang, Y.F. & Tsang, Alpha C.H. & Leung, Dennis Y.C., 2018. "Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell," Applied Energy, Elsevier, vol. 217(C), pages 258-265.
    3. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.
    5. Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
    6. Niu, Zhiqiang & Bao, Zhiming & Wu, Jingtian & Wang, Yun & Jiao, Kui, 2018. "Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 443-450.
    7. Xuan, Jin & Leung, D.Y.C. & Wang, Huizhi & Leung, Michael K.H. & Wang, Bin & Ni, Meng, 2013. "Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?," Applied Energy, Elsevier, vol. 104(C), pages 400-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    3. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    4. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    5. Li, Xinyi & Wang, Yifei & Yuan, Qibin & Bian, Qingfei & Simon, Terrence & Yang, Haibo & Wang, Qiuwang, 2024. "Thermal management of PV based on latent energy storage of composite phase change material: A system-level analysis with pore-scale model," Applied Energy, Elsevier, vol. 364(C).
    6. Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.
    7. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
    2. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    3. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
    4. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Li, Li & Xu, Qiang & Xie, Yajun & Wang, Xiaochun & Zhu, Kai & Zheng, Keqing & Li, Xinyu & Huang, Haocheng & Huang, Yugang & Bei, Shaoyi, 2024. "Narrow middle channel design in counter-flow microfluidic fuel cell with flow-through electrodes," Energy, Elsevier, vol. 288(C).
    6. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    8. Ouyang, Tiancheng & Chen, Jingxian & Liu, Wenjun & Xu, Peihang & Lu, Jie & Zhao, Zhongkai, 2022. "A comprehensive evaluation for microfluidic fuel cells from anti-vibration viewpoint using phase field theory," Renewable Energy, Elsevier, vol. 189(C), pages 676-693.
    9. Zuria, Alonso Moreno & Abrego-Martinez, Juan Carlos & Sun, Shuhui & Mohamedi, Mohamed, 2020. "Prospects of membraneless mixed-reactant microfluidic fuel cells: Evolution through numerical simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Li, Li & Fan, Wenguang & Xuan, Jin & Leung, Michael K.H. & Zheng, Keqing & She, Yiyi, 2017. "Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment," Applied Energy, Elsevier, vol. 206(C), pages 413-424.
    11. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    12. Liu, Wenjun & Sun, Xiuyang & Li, Yinxuan & Tan, Xinru & Ouyang, Tiancheng, 2024. "Designing and multi-evaluation of a promising gas-emission anode for eliminating CO2 accumulation in microfluidic fuel cell," Applied Energy, Elsevier, vol. 359(C).
    13. Li, Li & Wang, Hongkang & Bei, Shaoyi & Li, Yuanjiang & Sun, Yanyun & Zheng, Keqing & Xu, Qiang, 2023. "Unsymmetrical design and operation in counter-flow microfluidic fuel cell: A prospective study," Energy, Elsevier, vol. 262(PB).
    14. Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
    15. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    16. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    17. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    18. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    19. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    20. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.