IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v321y2022ics0306261922006894.html
   My bibliography  Save this article

Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization

Author

Listed:
  • Kim, Donghun
  • Wang, Zhe
  • Brugger, James
  • Blum, David
  • Wetter, Michael
  • Hong, Tianzhen
  • Piette, Mary Ann

Abstract

Thermal energy storage (TES) for a cooling plant is a crucial resource for load flexibility. Traditionally, simple, heuristic control approaches, such as the storage priority control which charges TES during the nighttime and discharges during the daytime, have been widely used in practice, and shown reasonable performance in the past benefiting both the grid and the end-users such as buildings and district energy systems. However, the increasing penetration of renewables changes the situation, exposing the grid to a growing duck curve, which encourages the consumption of more energy in the daytime, and volatile renewable generation which requires dynamic planning. The growing pressure of diminishing greenhouse gas emissions also increases the complexity of cooling TES plant operations as different control strategies may apply to optimize operations for energy cost or carbon emissions. This paper presents a model predictive control (MPC), site demonstration and evaluation results of optimal operation of a chiller plant, TES and behind-meter photovoltaics for a campus-level district cooling system. The MPC was formulated as a mixed-integer linear program for better numerical and control properties. Compared with baseline rule-based controls, the MPC results show reductions of the excess PV power by around 25%, of the greenhouse gas emission by 10%, and of peak electricity demand by 10%.

Suggested Citation

  • Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006894
    DOI: 10.1016/j.apenergy.2022.119343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    2. Bernard Knueven & James Ostrowski & Jean-Paul Watson, 2020. "On Mixed-Integer Programming Formulations for the Unit Commitment Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 857-876, October.
    3. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Ceusters, Glenn & Rodríguez, Román Cantú & García, Alberte Bouso & Franke, Rüdiger & Deconinck, Geert & Helsen, Lieve & Nowé, Ann & Messagie, Maarten & Camargo, Luis Ramirez, 2021. "Model-predictive control and reinforcement learning in multi-energy system case studies," Applied Energy, Elsevier, vol. 303(C).
    5. Ikeda, Shintaro & Choi, Wonjun & Ooka, Ryozo, 2017. "Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature," Applied Energy, Elsevier, vol. 193(C), pages 466-478.
    6. Tarragona, Joan & Fernández, Cèsar & de Gracia, Alvaro, 2020. "Model predictive control applied to a heating system with PV panels and thermal energy storage," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Daishi Sagawa & Kenji Tanaka, 2023. "Machine Learning-Based Estimation of COP and Multi-Objective Optimization of Operation Strategy for Heat Source Considering Electricity Cost and On-Site Consumption of Renewable Energy," Energies, MDPI, vol. 16(13), pages 1-26, June.
    3. Muqing Wu & Qingsu He & Yuping Liu & Ziqiang Zhang & Zhongwen Shi & Yifan He, 2022. "Machine Learning Techniques for Decarbonizing and Managing Renewable Energy Grids," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    4. Zhu, Peng & Zheng, J.H. & Li, Zhigang & Wu, Q.H. & Wang, Lixiao, 2024. "Optimal operation for district cooling systems coupled with ice storage units based on the per-unit value form," Energy, Elsevier, vol. 302(C).
    5. Deng, Xunhe & Li, Cong & Sun, Xiaohan & Wang, Chengyu & Liu, Baosheng & Li, Yudong & Yang, Haiyue, 2024. "Flame-retardant wood-based composite phase change materials based on PDMS/expanded graphite coating for efficient solar-to-thermal energy storage," Applied Energy, Elsevier, vol. 368(C).
    6. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    7. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).
    8. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    2. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    3. Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022. "The Private and External Costs of Germany’s Nuclear Phase-Out," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.
    4. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    5. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
    6. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    8. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    9. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    10. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    11. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    12. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    13. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    14. Finn Roar Aune and Rolf Golombek, 2021. "Are Carbon Prices Redundant in the 2030 EU Climate and Energy Policy Package?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 225-264.
    15. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    16. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    17. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    18. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    19. Aldy, Joseph E. & Burtraw, Dallas & Fischer, Carolyn & Fowlie, Meredith & Williams, Roberton C. & Cropper, Maureen L., 2022. "How is the U.S. Pricing Carbon? How Could We Price Carbon?," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 13(3), pages 310-334, October.
    20. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.