IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924020348.html
   My bibliography  Save this article

Dynamic line rating and optimal transmission switching for maximizing renewable energy sources injection with voltage stability constraint

Author

Listed:
  • Wu, Ke
  • Wang, Lei
  • Ha, Hengxu
  • Wang, Zhiyuan

Abstract

Renewable energy sources (RES), such as wind and photovoltaic, has been widely integrated into power systems. However, the phenomenon of “wind curtailment” and “sunlight curtailment” is still a critical issue, resulting in the sharp decline of renewable resource utilization. The factors of reducing the renewable resources injection are the limited line thermal capacity, voltage magnitude limit, and voltage stability issues. This paper presents a maximizing RES injection (MRI) problem with voltage stability constraints, AC power flow constraints and operating constraints. A novel dynamic line rating (DLR) technique is proposed for dynamically assessing transmission line capacity of transmission line. By jointly DLR and optimal transmission switching (OTS), the proposed model’s solution can maximize power network’s transmission capacity and ensure the technique and physical operation requirements of power systems. Due to the difficulty in solving the proposed model, a prescreening technique is presented to screen out the ineffective lines by three indicators. The proposed approach has been applied to the IEEE 24-bus RTS system, the IEEE 118-bus power system, and the IEEE 3120-bus power system. The computational results show the effectiveness of the conducted model in maximizing the utilization of RES and improving the acceptable level of power grid for renewable resources.

Suggested Citation

  • Wu, Ke & Wang, Lei & Ha, Hengxu & Wang, Zhiyuan, 2025. "Dynamic line rating and optimal transmission switching for maximizing renewable energy sources injection with voltage stability constraint," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020348
    DOI: 10.1016/j.apenergy.2024.124651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.